
NASA Contractor Report 177589 " "_:_,_

The Development of Laser Speckle
Velocimetry for the Study of
Vortical Flows
A. Krothapalli

(_,_A_A-£!_-1775q'Y) It-.IL _'-V_LQP_IENT LIP LAS"ER
S:_cC_Lc VELr'CTFIFI'PY i:q:_ THt STUOY jF

V:._TICAL rL'_ (_lori_._ _,t;_tp l,Jniv.) 117 p
CSCL 14_

CONTRACT NAG2-314

July 1991

National Aeronautics and
Space Administration





NASA Contractor Report 177589

The Development of Laser Speckle
Velocimetry for the Study of
Vortical Flows

A. Krothapalli

Fluid Mechanics Research Laboratory

Department of Mechanical Engineering

FAMU / FSU College of Engineering
The Florida State University

Tallahassee, FIodda 32306

Prepared for
Ames Research Center
CONTRACT NAG2-314

July 1991

NationalAeronautics and
Space Administration

Ames Research Center
MoffettField,California 94035-1000





Introduction

A research program was undertaken to develop a new experimental technique

commonly known as "particle image displacement velocimetry" to measure a

instantaneous two dimensional velocity field in a selected plane of the flow

field. Such a technique was successfully developed and applied to the study of

several aerodynamic problems. The detailed description of the technique is

given in Appendix I, which is a broad review of all the research activity carried

out under this grant.

The application of PIDV to unsteady flows with large scale vortical structures is

demonstrated in Appendix II, which describes the temporal evolution of the

flow past an impulsively started circular cylinder.

The instantaneous two dimensional flow in the transition region of a

rectangular air jet was measured using PIDV and the details are given in

Appendix IlI and IV. This experiment clearly demonstrates PIDV's capability
in the measurement of turbulent flows.

Preliminary experiments were also conducted to measure the instantaneous

flow over a circular bump in a transonic flow. Several other experiments are

now routinely using PIDV as a non-intrusive measurement technique to obtain

instantaneous two dimensional velocity fields.
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1. Introduction

One of the most challenging and time-consuming problems in experimental fluid

mechanics is the measurement of the overall flow field properties, such as the

velocity, vorticity, and pressure fields. Local measurements of the velocity field

(i.e., at individual points) are now done routinely in many experiments using

hot-wire (HW) or laser velocimetry (LV). However, many of the flow fields of

current interest, such as coherent structures in shear flows or wake flows, are

highly uns_.eady. HW or LV data of such flows are difficult to interpret, as both

spatial and temporal information of the entire flow field are required and these

methods are commonly limited to simultaneous measurements at only a few

spatial locations.

Interpretation of these flow fields would be easier if a quantitative flow

visualization technique was used in conjunction with the flow field

measurements. Such a technique would provide both spatial and temporal

information. One such method is termed particle tracing (Gharib, Dyne,

Thomas, and Yap, 1987) and consists of measuring the streak lengths and

orientation generated by injected particles. However, this method only provides

partial results, because of its limitations in accuracy and spatial resolution

(Lourenco, 1986).

Although the vorticity field is an essential property of most flows of current

interest, measurements of this quantity have exceeded experimental capability.

This difficulty arises from the fact that vorticity is a quantity defined in terms of

local velocity gradients. In contrast, the currently available flow measurement

techniques, such as hot-wire anemometry or laser velocimetry, are sensitive only

to the localvelocity. Hence, measurements must be made over several points and

the resulting velocity components are then analyzed by finitedifference schemes.

However, the errors produced by the necessary differentiationslimit the accuracy

and spectral range. In addition,the spatial resolution of this m_thod is often not

sufficient to measure small-scale fluid motions of rapidly changing velocity

gradients. As a consequence, the measured vorticityfield is a type of spatially

averaged estimate of the actual vorticity field. Finally, this method provides

information at only a single point. If information on the entire flow field is

required, measurements must be carried out sequentially one point at a time.

This sequential method, although laborious, is straightforward in applications

involving steady flows. However, the method becomes very difficult, if not

impossible, when studying unsteady flows. Direct me_lsurement of vorticity has
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been tried, for instance by the injection of spherical particles which rotate in the

flow with an angular velocity proportional to the local vorticity (Frish and Webb,

1981). Such methods suffer the same drawback of insufficient spatial resolution

just mentioned and also can be quite complex.

Recently, a novel velocity measurement technique, commonly known as Laser

Speckle Velocimetry (LSV) or Particle Image Velocimetry (PIV), has become

available. This technique provides the simultaneous visualization of the

two-dimensional streamline pattern in unsteady flows as well as the

quantification of the velocity field over an entire plane. The advantage of this

technique is that the velocity field can be measured over an entire plane of the flow

field simultaneously, with both accuracy and spatial resolution. From this the

instantaneous vorticity field can be easily obtained. This constitutes a great asset

for the study of a variety of flows that evolve stochastically in both space and time,

such as unsteady flow separation or vortex-surface interaction. This article

describes the principle of this technique, various methods of data acquisition and

reduction, same parameters that affect its utilization, and some examples of its

use.
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2. Principle of The Techaiqlm

The application of PIV to the measurement of the velocity in a fluid involves two

steps. First it is necessary to "create" a selected plane or surface within the riow

field. The orientation of this plane should be such that it contains the dominant

flow direction, if one exists. For instance, if the technique is used to measure the

velocity field over a model in a wind tunnel, the plane will be parallel to the wind

tunnel flow axis. The plane itself is created by seeding the flow with small tracer

particles, such as those used in LV applications, and illuminating them with a

thin sheet of coherent light, as depicted in Figure 1. A pulsed laser, such as a

Ruby or a Nd-Yag laser, or a CW laser with a shutter, is normally used as the

light source. The laser sheet itself is formed, for example, by focusing the laser

beam first with a long focal length spherical lens (to obtain minimum thickness),

and then diverging the beam in one dimension with a cylindrical lens. The light

scattered by the tracer p_rticlcs in the illuminated plane provides a moving

pattern. When the seeding concentration is low, the instantaneous pattern

consists of resolved, diffraction-limited images of the particles. When the

concentration increases, the images overlap and interfere to produce a random

speckle pattern. A multiple-exposure photograph, of two or more of the

instantaneous patterns and taken in quick succession, is used to record the data.

When the time interval betweez_ exposures is appropri_tcly chosen, the tracer

particles will have moved only a few diameters, far enough to resolve their motion

but less than the smallest length scale of the flow. Thus, information on the local

fluid velocity is stored on the photographic image and can be retrieved by

subsequent analysis.

In a second step the local fluid velocity is dcrived from the ratio of the measured

spacing between the images oi" the same particle, or speckle grain, and the time

between exposures. The recorded image, whether formed by isolated disks, in the

case of low particle concentration, or speckle grains for high particle

concentration, is a complicated random pattern. Several methods exist to convert

the information contained in the multiple-exposed photograph, or specklegram, to

riow field data such as velocity, streamlines, or vorticity. These methods can be

grouped into two broad categories. In the first category the distance between

particle pairs is evaluated directly. That is, the absolute locations of the particles'

corresponding images in the photograph are measured, for instance using a

digitized version of the photograph, and the velocity is determined by computing

the relative position of the corresponding images. The second category covers

those techniques that evaluate the particles' image spacings indirectly. The)'

exploit the property that all particles in a small region (small relative to the length
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scalesofthefluidunderstudy)aredisplacedroughlythesameamountbetween
exposures.Thispropertyis exploitedin severalwaysin bothhardwareand
softwarerecentlydevelopedin digitalimageprocessingto determinethevelocity.
Onespecificmethodin thissecondcategory,evaluationby Young'sfringes,is
describedin detailinSection4.2,followingabriefoverviewofothertechniquesin
Section4.1. However, a brief background of how this analysis technique first

originated is described first.

For instance, it is conceivable to measure the local displacements by visual or

computer-aided inspection. 2'he data reduction systems that have been proposed

are based on the digitization of the entire photograph into a very large number of

pixels and the development of algorithms to permit computer identification of

individual streaks or pairs of particles. Methods for this direct analysis of these

images have been developed, but with limited success. Gharib et al, (_987), EIkins

et al (1977), and Dimotakis et al (1981) are recent studies where this technique has

been used. Photographs based on these techniques ure difficult to interpret when

the mean distance between two independent particles is the same order of

magnitude as the particle displacement. This difficulty is usually circumvented

by using low particle concentrations. However, flow field information is then

restricted to those isolated locations where particles are present. This results in

velocity measurements with low spatial density. Spatial derivatives of the velocity

(e.g., vorticity) are then difficult to estimate and must be inferred by indirect

arguments, such as described by Dimotakis, et al, (1981).

It is important to realize that the multiple-exposure photograph produces a locally

periodic random image. This periodicity is proportional to the local velocity and

can be determined using Fourier or autocorrelation techniques. To obtain the

velocity field,the photograph can be scanned on a point-by-point basis, which

yields measurements of the localdisplacement (i.e.,velocity),or with a whole field

filteringtechnique, which yields isovelocitycontours. An example of this latter

method is given by Meynart, (1980). Recently, an anamorphic optical system has

been proposed by Collicott& Hesselink (1985). This method performs a I-D Fourier

transform in the x-direction for measuring the x-velocity component, and images

the speckle pattern in the y-direction. This results in curved fringes which have a

local spacing inversely proportional to the x-velocityat that point. Simultaneous

multiple point measurements are obtained by imaging in the y-direction. Thus, it

is possible to measure a velocity component along a selected line in the flow.

12



3. History of Particle Image Velocimetry

The terms Laser Speckle Velocimetry and Particle Image Velocimetry (or

sometimes Particle Image Displacement Velocimetry) are often used

interchangeably. However, these terms reflectan important distinction,related to

the particle density in the flow field. To understand these differences,it is first

necessary to describe how the application of this technique to the measurement of

fluidflows developed.

The term "speckle",or the speckle phenomenon refers to the granular appearance

that diffusely reflectingand transmitting surfaces take on when illuminated by a

laser beam. This grainy appearance is caused by constructive and destructive

interference of coherent light (i.e.,the laser beam) scattered from a surface

element whose roughness is large compared with the wavelength of the laser. For

example, when a sheet of white paper is placed in the path of a laser beam, the

reflectedlight contains information on the roughness of the paper. In the fieldof

holography this is sometimes referred to as speckle noise (e.g., Collier,

Burckhardt, and Lin, 1971). Actually, it is not noise but rather unwanted

information in the context of holography. It is this information that is utilizedin

the laser speckle context. The firstapplications that made use of the speckle

phenomena were in the field of solid mechanics. It was originally used to

measure in-plane displacement and strain of solids with diffusely scattering

surfaces and has also been applied to surface roughness measurement, vibration,

and deformation analysis. Several early applications of the laser speckle concept

are described in Err(1980) and Stetson (1975).

The technique as used for the measurement of displacements in solid mechanics

is essentially as follows. A surface is firstilluminated by a laser beam, as shown

in Figure 2. When this surface is imaged through a lens onto a photographic

plate,the interference of the scattered lightwavelets gives rise to a speckle pattern.

The speckle size is a statisticalaverage of the distance between adjacent regions of

maximum and minimum brightness and can be estimated (Err, 1980) by the

Rayieigh resolution criterion

ds= (1.2)kf_(l+M) (1)

where d s is the size of a speckle grain, k is the wavelength ofthe illuminating

laser, f N is the f-number of the recording optics, and M is the

13
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magnification. A doubly exposed photography of the speckle pattern is then

recorded, once before and once after a |atera] displacement is introduced. This

photograph, or specklegram, contains two correlated grids which can be

analyzed as a non-uniform diffraction grating. The technique can only be used

when the displacement between exposures is greater than the speckle size, d s ,

but not so great as to destroy correlation. Thus, the individual speckle size sets

the lower measurable limit. Analysis of this specklegram was performed by

generating Young's fringes from the specklegram transparency, as described

in Section 4.2.

Although speckle photographs obtained in solid mechanics and fluid

mechanics are similar, there are two fundamental differences. The first is

that the fluid is illuminated by a sheet of laser light whose thickness is Az.

Therefore, scattering occurs from a volume distribution of particles rather than

a surface distribution. Secondly, the number deasity of particles per unit

volume (seeding concentration) can vary over a wide range of values. Strictly

speaking, for a true speckle pattern to exist, the number of scattering particles

must be so high that the images overlap and interfere to produce a random

speckle pattern in the image p}ane. When tim particle concentration is lower

than this level (and reasons why this can often be an advantage will be

discussed in a later section) discrete images of the particles will be

photographed instead. This low particle concentration is referred to as Particle

Image Velocimetry (PIV), reserving the term Laser Speckle Veiocimetry (LSV)

for the high particle concentration levels where a random speckle pattern is

usually formed. Most of the early applications of this technique to fluid flows

(e.g., Simpkins and Dudderar, 1978) used the LSV method, whereas for reasons

to be described later, most of the more recent studies use the lower

concentration PIV method.

15



4. Particle Image Analysis

4.I Overview of Analysis Techniques

The most common methods of analysis are point-by-point techniques. In this type

of analysis a small portion of the multiple-exposed photograph is examined, over

which the velocity field is assumed constant. Several techniques have been

developed to extract the flow fieldinformation. One approach consists of analyzing

the position of the particles in the image plane and measuring directly the image

pair spacings in the photographs. In this method the localparticle displacements

are measured, for example, by determining the two-dimensional correlation of the

image fieldwithin the interrogation region. The spot is digitizedin a NxN format

(where N is the number of pixe] rows or columns) and a two-dimensional

correlation is performed. This results in a di&dtalautocorrelation function with a

maxima at the coordinates corresponding to the average displacement of the

tracer particles. The major drawback of this method is that the computation of" the

autocorrelation function requires large data arrays and becomes extrcmcly slow

when N is large. A new processing method, developed and used by Yao and

Adrian, (1984), reduces the general NxN element of a two-dimensional problem

into two N element one-dimensional problems, by compressing the information in

two orthogonal direction using integration techniques. In this method, called

"orthogonal image compression", the 2-D imagc of an interrogation region is split,

and optically compressed onto two orthogonally-aligned linear detector arrays.

Particle images in the 2-D region appear as peaks in the 1-D distributions of each

of the two array signals. The optimal method for determining the separation of the

peaks, and thus the velocity, depends on the image density, defined as the mean

number of particle image pairs in the interrogation region. If the image density is

less than one, the peak separation is measured directly in each orthogonal

direction. If the image density is greater than one, the peak separation is

evaluated using 1-D spatial correlation. A recent study by Landreth, Adrian, and

Yao, (1988) has indicated, however, that the correlation distributions given by this

technique sometimes included random peaks in addition to the peaks created by

the particle image pairs, resulting in incorrect measurements. These extraneous

peaks seem to be due to random image pairings. Modifications to this method to

prevent this possibility are currently being investigated.

4.2 Analysis of Young's Fringes

An alternate method for the measurement of the local displacement between the

two images of the particle pair is by the use of Young's fringes. These fringes are

obtained by illuminating a small portion of the specklegram, or multiple-exposed

photograph, with a focused laser beam. The diffraction produced by coherent

16



illumination of the multiple images in the negative generates a fringe pattern in

the Fourier plane of a lens, provided that the particle images correlate. This is

shown schematically in Figure 3. These fringes have an orientation which is

pcrpendicular to the direction of the local displacement and a spacing which is

inversely proportional to the displacement. If A is the real translation of the

object, then this is related to the distance between the particle images, s, by

A=s/M , (2)

The spacing between Young's hinges can be shown to bc (e.g., Born and Wolf,

1980),

df = kfL/s (3)

where df is the fringe spacing and fL is the focal length of the converging lens.

Thus, the displacement of the images is given by

a : kfL _ d f (4)

This technique offers an important advantage over those that directly analyze the

particle images in that it eliminates the difficulties associated with finding the

individual image pairs on the photograph.

The basis of the Young's fringe method can be described as in the following.

Consider the function D(r) describing the light intensity in the image plane of a

photographic camera, where r(x,y) are the plane coordinates. Considering that

there is an in-the-plane displacement dy of the scatterers, the image will be

translated by Mdy between exposures, where M is the magnification of the

camera lens, and the resulting intensity distribution of the specklegram is

D(x,y) + D(x,y + Mdy) = D(x,y) ® [5(x,y) + 5(x,y + Mdy)] (5)

where 5 (x,y) is the Dirac delta function centered on r(x,y), and considering that

a translation can be represented as a convolution with a delta function. This total

intensity is recorded on the photographic plate. After development, the

transmittance, _ , of the negative is givcn by

17
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q;(r) = a+bD(x,y) ® [5(x,y) + _(x,y+Mdy)] (6)

where a and b are characteristic constants of the photographic emulsion. Local

analysis of a small portion of the film negative with a probe laser beam will

produce in the far field an optical two-dimensional Fourier transform of the

transmittance distribution, with an intensity distribution given by

"l:(u,v) = a _(u,v) + b D(u,v)[ ]+expCi2nv Mdy)/k,,] (7)

where _ represents the Fourier transform of +_, u, and v are the angular

coordinates of a point in the Fourier plane, and )'. is the wavelength of the

interrogating laser beam. Thc first term, a 5(u,v), on the right hand side of

equation (7) represents the imagc of a point source, (i.e., the interrogating beam),

when diffraction effects are neglected. This image is seen as a small bright spot in

the center of the Fourier plane. The second term is composed of a fine speckle

structure D, modulated by the expression

[ l+exp(i2nv Mdy)/Xa] (8)

The intensity distribution for the second term is obtained by multiplication with its

complex conjugate, resulting in

ID(u,v) _214cos2(2r_' Mdy)/X,_] (9)

The diffuse background, given by ID(u,v)]2 and called the "diffraction halo", is

modulated by a set of Young's fi'inges whose spacing is given by equation (3).

Knowing M, fL, k s, and measuring df the displacement dy is easily found

from equation (3). The direction of motion is perpendicular to the orientation of the

fringes. There is a 180 deg. direction ambiguity in that the motion is known only

as perpendicular to the fringes. A method to resolve this ambiguity is described in

Section 5.8.

4.3 Limitations of the Young's Fringes Method

Ttae formation of the fringe pattern that occurs when a local region of the

specklegram is illuminated with a coherent laser beam requires that the

displacement of the particle pairs within the interrogation region be correlated.

19



Identicalshiftingofallparticlepairswill resultin perfectcorrelation.Twofactors
reduce this correlation and can eliminate the fringe pattern. The first is when

there is a slight out-of-plane motion of the particles, due to three-dimensional

motions in the flow. The tolerance to out-of-plane motion is basically equivalent to

the width of the illumination sheet and the depth of field of the recording optics.

The time between exposures and the width of the illuminating sheet need to be

carefully selected to avoid too many particles entering or leaving the sheet between

exposures. The second factor is when the velocity varies across the interrogation

region. This will cause the various particle image pairs to be displaced by different

amounts. This will not occur when the diameter of the interrogation region is

smaller than the smallest length scale of the flow being studied.

4.4 Data Processing

The Young's fringe pattern, produced by the techniques described in Section.4.2,

are analyzed using a digital image analysis system, which typically consists of a

host computer, a digital image processor, _ frame digitizer, pipeline processor,

and a video output controller to convert digital to analog information for display on

a monitor. The system also usually includes a two-dimensional traversing

mechanism and a controller for the purpose of automatically scanning the film

transparencies. Analysis of the fringes can occur in either an interactive mode,

which requires the assistance of an operator, or in an automated procedure.

The interactive method consists of firstobtaining a I-D periodic signal from the

straight fringes. This is performed by determining the fringe angle relative to a

predetermined reference line, followed by an averaging over the lines of the

digitizedpicture as given by the following relation.

f(m) = XI[m+(n-255)tana,n], 0<:m__.511 (I0)

where f(m) is the resulting periodic signal, I(m,n) represents the digitized

picture, and a, is the angle of the fringes with the reference n axis. In this

equation it is assumed that the image is digitized with a 512x512 format with 256

shades of gray. The extraction of the frequency from this signal is

straightforward. The Fourier transform of ffm) displays a peak at the frequency

proportional to the velocity component parallel to the m axis. However, due to low

frequency modulation of the fringes, which is a consequence of the non-uniform

light intensity distribution in the diffraction halo, it is sometimes difficult to

identify this peak, especially if the fringes have a low frequency (i.e., few fringes).

To remove this modulation, the fringe signal can be passed through a high pass

filter prior to processing.

20



The advantage of this one-dimensional averaging technique is rapidity, in that

only one line of the fringe pattern needs to be digitized. The computation, which

includes the determination of the fringe angle by the operator and position

updating of the film transparency scanning mechanism, can be completed in just

a few seconds. The disadvantage of this method is the need for an external

adjustment of the angle of the fringes by an operator. This inconvenience can be

corrected by using the automated method.

The second method, which does not require an operator, consists of computing the

velocity components along independent directions. The basis for this method is

that each line of the fringe frame can be considered as a noisy periodic signal with

variable phase. Then the automatic determination of a velocity component can be

performed simply by averaging over a quantity independent of this phase. The

autocorrelation for each line, or its Fourier transform for the power spectrum,

s_,tisfies this requirement. Using the autocorrelation, the m velocity component

can be computed from the relation

g(u) = Z[(Y[l(m,n)l(m+u,n)J/Z[l(nl,n)J2],-511<u<511 (11)

where g(u) is the resulting periodic signal,based upon the autocorrelation of the

intensity distribution. This algorithm has been implemented on a pipeline

processor by Lourenco and Krothapalli, (1988) to compute the autocorrelation for

all lines of a frame simultaneously. They found that, for an accurate estimate of

both the velocity magnitude and direction,four such fullimage operations, giving

four autocorrelation functions, were required. From these autocorrelation

functions the velocity vector can be determined by selecting the values of the

components which have been computed from autocorrelations having the highest

signal-to-noise ratio, and visibility. The determination of the velocity vector

typically takes on the order of two to five seconds.

The obvious advantage of this technique is that no external operator is required.

However, a shortcoming of this technique is the difficulty in measuring the

velocity when the fringe density is too low (typically less than three bright fringes).

In this case, the velocity can still often be evaluated by the interactive,

one-dimensional averaging method. Hence, these two methods are actually

complementary.

21



5. Detailed Considerations

This section describes some of the parameters that can affect the use of particle

image velocimetry. The impact of these parameters is discussed and, where

possible, recommended values are given.

The technique relieson the abilityto detect and record on a photographic plate the

images of the tracer particles. This image is a function of the scattering power of

the particles within the fluid,the amount of light in the illuminating sheet, the

length of time the film is exposed, magnification of the recording optics,and film

sensitivity at the wavelength of the illuminating laser light. The specific

parameters playing a role in PIV include the following. Additional details are

contained in Lourenco and Krothapalli, (1987) and Smith, Lourenco, and

l(rotlmpalli, (1986).

Light source;

Tracer particle;

Exposure parameters;

Film parameters;

Recording optics;

strength and duration of pulses

type, dimension, and concentration

duration, time between exposures, and number

of exposures

sensitivity, grain size, and resolution

magnification and lens aperture

These parameters are strongly interrelated and depend upon such factors as the

type of fluid, velocity range and length scales of the flow being studied, and the

required spatial resolution in the results.

5.1 Light Source

The lightrecorded on the specklegram is that which has been scattered 90 deg. to

the incoming laser light sheet. Extremely bright light sources are usually

required because of the low efficiencyof this scattering process. Although the

particle detection increases proportionally with increasing power of the

illuminating laser, it is important to keep the laser power requirement to a

minimum, primarily because of the expense. The specificamount of laser light

energy required is a function of tracer size and concentration, recording lens

aperture and magnification, and film sensitivity. For a successful photographic

recording of a particle image, the mean exposure of an individual particle image

must be greater than the film sensitivityat the wavelength of the illuminating

laser. This minimum sensitivityis sometimes referred to as the "gross fog" level

(Adrian and Yao, 1985). In analytical terms this is expressed as
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m _'-.m ....

E = fat _dt > CE 0 {12)

where E is the mean exposure of an individual particle hnage, _ is the average

intensity of light scattered by a particle, E o is the film fog level,and C is a

constant between I and 10. The fog level is defined as the exposure level below

which the transmissivity of the film is independent of the incident intensity, as

shown in Figure 4.

The mean intensity of the light,

expressed as

= (4/n_'2di 2) I0 Io)o 2 dc_

z, of the lightscattered by a single particlecan be

(13)

where K is the wavenumber of the illuminating laser light, d i is the nominal

diameter of the particle, including diffraction, I0 is the intensity of the

illuminating sheet, o is the Mie parameter, and to is the solidangle subtended

by the camera lens. The effectivedimension of the particle image, di, can in

turn be expressed as

di __.{M 2 dp2 + de2) 1/2 (14)

where dp is the actual particle diameter, and d e is the diffraction-limited spot

diameter of the particle image, given by

de = 2.44 (l + M) ft,,). (15)

Equation (14) is an approximate relation representing the combined effects of

magnification and image blurring in determining the final image diameter.

When a pulsed laser is used, and assuming that the particle is stationary during

exposure, the laser power required is determined from equation (12).

I o >[CE o (_*c2di2)} / 4 f o _-d_o (16)

The recommended va}ue for the constant C in equation (16) is between three and
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five to account for the film reciprocity effects caused by very short exposures.

Similar calculations for a CW laser are discussed by Lourenco, (1986).

5.2 Tracer Particles

The basic assumption in all techniques that use tracer particlesadded to the Now,

whether it'sLV, PIV, or some other technique, is that the motion of the particle

accurate]y follows the motion of the fluid. These requirements are usually met by

tracers used in LV applications. In air flows for instance, oil smoke produces a

relatively uniform seeding. The minimum detectable particle diameter is a

function of the recording optics and the laser input energy. Particles ranging

from 0.5-10 jam are fairlytypical. It should be noted that, for particlesof this size,

the diameter of the recorded image is relative]y insensitive to the actual particle

diameter. In this rangc of particle sizes, the image size is dominated by

diffractioneffectsfrom the photographic lens.

5.3 Particle Concentration

The Laser Speckle mode of operation reliesupon identical,laterallyshifted speckle

patterns. For these speckle patterns to exist,the number of scattering sites per

unit volume must be high enough that many imnges overlap with random phase

in the image plane. With lower concentrations the mode of operation changes

from the speckle mode to the particle image mode (Pry) where the pattern consists

of discrete images of particles. Velocities determined from the LSV mode suffer

inaccuracies associated with the randomness of the speckles, but the velocity can

be determined at any point in the flow. In the PrY mode, regions of the flow field

may be leftout due to poor seeding (sometimes referred to as signal drop-out) but

the velocitycan be measured without the inaccuracies of the speckle mode.

Slight out-of-plane motion of the particles,due to three-dimensional motions in the

Now, will result in speckle patterns that are not entirely similar. As a

consequence, the correlation between patterns decreases and the fringe pattern is

suppressed of eliminated. This poses a severe limitation in the use of the laser

speckle mode for the study of turbulent.flows, or flows with a significantvelocity

component in the direction perpendicular to the laser sheet. However, the fringe

quality is less dependent on out-of-plane motion in the PIV mode of operation. In

this case the tolerance to out-of-plane motion is roughly equivalent to the width of

the illuminating sheet and the depth of fieldof the recording optics.

There are practical bounds to the particle concentration in both modes of

operation. In the Pry mode the upper boundary is set simply at that value above
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which a speckle pattern is formed, as shown in Figure 5. If Cp is the particle

concentration and Az the width ofthe laser sheet, the maximum concentration is

given by

{I/(AzCp)}i/2 )) di/M (17)

where di isthe image diameter, _dven in equation (14).

The lower end in the PIV mode can be determined by the criterionthat, in order to

have a valid experiment, a minimum number of particle image pairs must be

present in the area being scanned by the interrogation beam. The case of a single

particleimage pair is ideal because it yields fringes with optimum signal-to-noise

ratio. However, this situation can only be achieved by lightly seeding the flow,

which gives rise to signal drop-out. An interesting case occurs when two particle

pairs are present in the interrogation area. The resulting diffraction pattern

includes multiple equally intense fringe patterns due to cross interference of

non-corresponding image pairs. In this situation, shown in Figure 6, the local

displacement cannot be resolved. As the number of particle image pairs in the

interrogation area increases, the cross interference fringes become weaker in

comparison with the main fringe pattern, which reflects the local displacement.

These cross-interference fringes are sometimes called "background speckle

noise". Experience shows that, for reasonable fringe quality, at least four particle

image pairs should be present in the interrogation area.

At the high end of the particle concentration scale, the LSV mode, the particle

concentration is governed by convenience, economics, and flow distortion.

Attempting to obtain these high particle concentrations in large scale flows or in

high speed flows, such as in a wind tunnel, can become exceedingly difficult,as

well as expensive as the actual number of particles increases. Finally, the high

concentration of particles required by the LSV mode may influence or distort the

flow fieldbeing studied. For these reasons, the PIV mode is normally used.

5.4 Exposure Parameters

The exposure parameters are chosen in accordance with the maximum expected

velocity in the flow field and the required spatial resolution. The spatial

resolution, which in turn is equal to the cross-sectional area of the interrogating

laser beam, is dictated by the scales associated with the fluid motion. So as not to
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lose any information, the spatial resolution should be less than the smallest scale

in the flow being studied.

The time between exposures, T, is determined by the maximum permissible

displacement of a particle such that a correlation is obtained when the negative is

analyzed locally with a probe laser beam. A necessary condition to obtain a fringe

pattern is that the distance between adjacent particle images be less than a

fraction of the analyzing beam diameter. In practice, the maximum permissible

displacement that can be detected corresponds to the case when the fringe spacing,

dr. is larger than the diffractionlimited spot diameter, d I, of the interrogating

optics. In analytical terms,

df = kafL/MTVma x > d I = 4 _.afL/nD (18)

The time between exposures can then bc expressed as

T = (0.5)D/MVma x (19)

For practical purposes the value of (0.5) is used instead of the mathematically

correct (n/4), as given in equation (18). This points up another advantage of this

technique, in that the velocity sensitivity range can easily be shifted by altering the

pulse separation, T.

For very short exposures the recorded particle images are identical to the

diffractionlimited particle images, as the particlesappear to be stationary during

the exposure. When the exposure time is increased, the recorded images becomes

streaks whose length is directly proportional to the exposure time. The diffracted

light in the spectrum is concentrated in a band whose width is inversely

proportional to the streak length. For optimum exposure, Lourenco {1984) has

shown that the exposure time, At, should be

At = di / MVm, x (20)

where d i is the particle image diameter.

5.5 Film Parameters

The technique relieson the abilityto detect and record on photographic media the
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images of the seeding particles. This is a function of the scattering power of the

particles within the fluid, the amount of light in the illuminating sheet, camera

lens and film sensitivity at the wavelength of the illuminating laser light.

Although the particle detection increases proportionally with increasing power of

the illuminating laser, it is of great importance to keep the laser power

requirement to its minimum for economy.

To compensate for the many cases when limited laser power is available for

illumination, the film used to record the particle images should have good

sensitivity, but without sacrificing film resolution. Unfortunately, for

commercially available photographic films, speed and resolving power are

inversely related. Hence, choices range between high speed, low resolving power

and low speed, high resolving power. For most practical applications good

precision is necessary, so the advantage lies with the high resolution films (with

about 300 line-pairs/mm). Of probably more importance, however, is tile film

grain. When illuminating the fihn negative to produce Young's fringes, the film's

unexposed grains can introduce amplitude and/or phase changes into the

wavefront of the analyzing laser beam, thus creating additional noise. This noise

has a frequency content which is in the same general range as the fringes.

Therefore, its elimination is difficult either by optical or digital filtering. Lourenco

and Whiffen (1984) reduced this noise source by producing a positive copy through

contact printing, on a very high resolution fine grain film. The positive copy was

analyzed in the same manner using the probe laser beam. Problems arising from

film grain will always be present, especially in applications where fast film is used

to cope with low power density of the illuminating sheet. However, in general, the

grain size should be much smaller than the diameter of the particle image to avoid

this unwanted noise.

5.6 Recording Optics

As mentioned previously, the minimum detectable particle diameter is a function

of the f-number of the recording optics. In fact, the f-number can have a

significant effect on the mean exposure of an individual particle image. When the

particle diameter is small compared with the diffraction-limited spot diameter,

d e , then d i, the dimension of the particle image including diffraction, is

independent of the actual particle diameter and instead is proportional to the

f-number. The minimum detectable particle diameter can be shown to increase

sharply for apertures smaller than f-ll. Of course, any size particle can be

detected provided the concentration is high enough. However, there are many

reasons, described in other sections, for not increasing the concentration.
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5.7 Dynamic Range

The dynamic range of the technique refers to its ability to resolve large velocity

gradients in the flow field. It is defined as the largest velocity difference that can

be detected. The low end of the dynamic range is determined by the requirement

that the spacing between successive particle images be well resolved. That is,

simply that they do not overlap. In analytical form,

I s = d i + Vmi n At < TVmi n (21)

where Is is the spacing between successive particleimages. It was shown in the

previous section that T, the time between exposures, is related to the maximum

velocity Vma x as

T = (0.5) D / M'Vma x (19)

For a pulsed laser and low speed flows it is sufficient to assume that At = 0. Thus,

combining these Equations (21) and (19),

Vmi n = 2M d i Vma x D (22)

The velocity dynamic range is then defined as the normalized velocity difference,

AV = (Vma x - Vrain)/Vmi n

and is written as

(23)

AV=(D/2Md i) -1 (24)

for a pulsed laser. Considering typical values of d i = 0.3 mm, D = 5 ram, and M =

1, a dynamic range of 7.5 can be expected. A relation similar to equation (24) can

be obtained for a CW laser, using At = d i / Vma x. Following the same line of

reasoning,

AV=(D.2di)/(2Md i) - 1 (25)
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for a CW laser. A powerful advantage of this technique is evident in these

equations. That is, by adjusting the magnification M in recording the

specklegrams, the system sensitivity can be altered to accommodate the amount of

motion anticipated in the experiment..

5.8 Direction Ambiguity

One disadvantage of using a multiple-e×posure photograph to extract velocity data

is the 180 deg. ambiguity in determining the direction of the velocity vector. That

is, given identical conditions in recording each of the two exposures, there is no

property identifying the order in which the two images of the particle were

recorded. Measuring the separation of the particle image pair provides the

magnitude of the velocity at that point, but is insufficient to give the direction of the

velocity vector field. Thus, a given displacement will indicate a velocity of +/- U,

with the sign being ambiguous. Many flow fields of interest {such as wakes and

separated flows) contain regions of reversed flow and the direction may not be

known a priori. Thus, a nmans to remove this ambiguity would be very useful.

A method to resolve both this ambiguity of the velocity vector, as well as to improve

the dynamic range of the measurements, has been developed by Adrian, (1986) and

Lourenco, et a] (1986). This method is termed "spatial image shifting" or "velocity

bias technique". The method consists conceptually of recurding the flow field in a

moving reference frame, and thus superposing a known velocity bias to the actual

flow velocity. This is accomplished by shifting the image by a known displacement

between the two exposures. The image can be shifted physically using a moving

camera, or by optical means using rotating or scanning mirrors. This effect is

demonstrated in Figure 7. Consider a flow field with regions of reversed flow, and

with velocities ranging up to a value V. Four such velocities, one in each of the

four quadrants, are shown in the figure. Using standard PIV recording

techniques, it would not be possible to resolve between velocities lying in the first

(or second) quadrant from those lying in the third (or fourth) quadrant. Now

impose a velocity V*, much larger than V, as in Figure 7. The four velocity vectors

are now transformed into four distinctly different vectors, depending upon their

direction. The correct velocity, with its direction, can now be easily obtained upon

removal of the velocity bias.

The method currently employed uses a scanning mirror to displace the image

during the exposure with a predetermined velocity. A schematic of the scanning

mirror arrangement is shown in Figure 8. Consider two particle pairs A 13 and C

D, having equal displacements in opposite directions in the object plane. By

introducing a mirror placed aL 45 deg. between the camera lens and the object
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plane, the corresponding displacements appear in the film plane as AB and CD

with equal magnitudes. When the mirror is rotated by an angle of A0 between

exposures, the displacements corresponding to A B ,rod C l) appear in tile film

plane as AB' and CD', with different magnitudes, resolving the direction

ambiguity.

Figure 9a is a double-exposure photograph of the flow past in impulsively started

airfoil captured at a stage of its development corresponding to a non-dimensional

time of t* = tU/c, where t is the time from the start of the motion, U is the

free-stream velocity, and c is the airfoil chord. This figure depicts a complex Ilow

field and exhibits large regions of flow reversal. Analysis of this photograph

would yield velocity vector information only within the restriction of the 180 deg.

direction ambiguity. In addition, there would also be regions of drop-out where the

flow velocity is less than the lower velocity range limit of this technique. Using the

velocity bias technique, with a bias velocity equal to two times the free stream

velocity, gives the biased images shown in Figure 9b. The velocity field obtained by

analyzing Figure 9b is shown in Figure 10a. The actual velocity field, in the

reference frame of the airfoil, is given in Figure 10b, upon removal of the velocity

bias.

5.9 Overall Accuracy of the Technique

It has been pointed out that out-of-plane motion (i.e., three-dimensional motion) is

a severe limitation to this technique in the application to fluid flow. The reason for

this limitation is that out-of-plane motion by the tracer particles results in patterns

that are poorly correlated. Consider the imaging system shown in Figure 11, with

the particle in position Po within the laser sheet. The particle will more to a new

position R 0 between exposures due to the fluid motion, including an out-of-plane

motion dz. In the image plane the corresponding positions are PL and R L. The

coordinates of these latter two locations are, neglecting second-order and higher

terms for simplicity,

PL; {-Mx, -My, (d o + dL)}

RL; {-M(x + dxXl + dz/dL), -M(y + dy)(l + dz/dL), (d O ÷dL)} (26)

The displacement between these two locations, PL RL, determined by the method of

Young's fi'inges, is given by
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Figure 10a. Instantaneous Velocity Field olVAirfoil Impulsively Startcd from l{est;

Before Removal orVelocity Bias
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Figure 10b, Instantaneous Velocity Field of Airfoil Impulsively Started from Rest;

After Removal of the Vclocity Bias
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dx m = M dx (1 + x dz/dx dL), dy m = M dy (I + y d'ddy d L) (27)

Thus, the measured displacement components, referred to the object plane,

become

dx o = dx + x dz/d L, dy 0 = dy + y dH d L (28)

The contribution of the out-of-plane displacement to the measured displacement is

given by the two parasite terms, x dz/d L and y dz/d L. The error produced by

three-dimensional motion is a function of the distance from the optical axis. While

negligible near the optical axis, it increases linearly, and may become important,

farther away. The importance of the out-of-plane motion therefore becomes

particularly important when using short focal lengths and wide angle objectives.

The overall accuracy of the technique can be evaluated by studying the uniform

flow field created by towing a camera at constant speed past a quiescent flow.

Several multiple-exposure photographs were taken, with differing times between

exposures, thus resulting in photographs with particle pairs at different known

distances. The range of time between exposures, as well as the distance between

corresponding particleimages in the film plane are presented in Table I. A large

number of points (100) of these fivephotographs were analyzed using the methods

described previously. Uncertainties in the experiment include errors introduced

during the recording of the multiple-exposure photograph, such as the ones

introduced by distortion of the scene being recorded by the camera lens, limited

film resolution, and inaccuracies due to the processing algorithms.

In the absence of a systematic bias,the standard deviation of the measured velocity

distribution is an estimate of the mean measurement error. Analysis of the film

transparencies using the two techniques (the interactive, one-dimensional

averaging method and the automatic autocorrelation method) yields the same

mean value with a nearly equal standard deviation (Table 1). The values in Table 1

indicate that using these methods, inaccuracies of the order of I-2 _ are expected.

It is believed that these inaccuracies are due to a combination of the limited

resolving power of film used for recording (only about 100 lines/ram) and the

limited response of the camera lens. Another source of error which is not

accounted for in this analysis is the one due to the spurious contributions on the

in-plane displacement recording by the out-of-plane motions (Lourenco & Whiffen,

1984, Lourenco, 1986).
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Table 1. Overall Accuracy of the Technique

Time Between Fringe RMS Fringe Measured

Exposures, msec Frequency Frequency Distance, t_M

22.2 33.447 0.257 194

25.0 37.045 0.208 218

28.6 42.950 0.381 249

33.3 49.037 0.710 291

40.0 60.693 1.190 350
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6.Examples

6.1 Flow Behind a Circular Cylinder

The time-space development of the near wake flow behind a circular cylinder

impulsively accelerated from rest to a constant velocity is studied in this first

example. This flow is excellent as a firstexample because itcontains large-scale

vortical motions and has extreme velocitygradients. Also itis a well-studied flow

and there are several theoreticalanalyses.

A classicflow visualization study of thisflow was performed by Prandtl (1927) and

reveals several interesting flow features. Soon after the motion begins, the

boundary layer separates and vorticity is convectcd away from the rear of the

cylinder. Two symmetric eddies are formed behind the cylinder, each containing

vorticity of opposite sign. The two separating streamlines that surround these

eddies join downstream of the eddies and form a closed vortex region. The size of

this region grows with time and eventually becomes larger than the cylinder

itself. As time increases still further, perturbations cause the standing vortices to

develop asymmetric oscillations. Eventually, some of the vorticity in the larger

eddy breaks away and moves downstream. The process repeats itself with the

other eddy and the flow develops into the familiar Karman vortex street.

The experiment was conducted by towing circular cylinder,25.4 mm in diameter

through a towing tank measuring 300x200x600 ram. The towing carriage is

driven by a variable DC motor, and the towing velocity was 22 mm/sec. The

Reynolds number, based on cylinder diameter, was 550. The fluid used in the

experiment was water seeded with 4 micron metallic-coated particles. For the

illumination, a laser beam from a 5 Watt Argon-lon laser is steered and focused

to a diameter of 3 mm using an inverse telescope lens arrangement. A

cylindrical lens, with a focal length of-6.34 ram, is used to diverge the focused

beam in one dimension, creating a light sheet. The laser sheet was 70 mm wide

and the illuminated the mid-span section of the cylinder. For the multiple

exposure, the CW laser beam was modulated using a Bragg cell. In this

experiment the laser power density, I0, of the sheet was 0.27 W/rnm 2. A 35 mm

camera, attached to the towing carriage, was used to record the flow field. The

frequency at which the multiple exposures were taken was 1.7 Hz. The aperture

of the lens, with a focal length of 50 mm and a space of 12 ram, was set at F#5.6

and the resulting magniflcation factor was 0.40. The exposure time, t,and the

time between exposure, T, were chosen by the criteriadescribed in Section 5 and

are 3 msec and 30 msec, respectively. These two parameters, along with the
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diameter of the analyzing beam and the particle image diameter, determine the

dynamic range of the velocity (see Section 5). For this experiment, the dynamic

range was roughly 6.

The flow was captured at several stages of its development, corresponding to t*,

where t* = tU/D, the non-dimensional time, t is the time from the start of the

motion, U is the free stream velocity, and D is the cylinder diameter. Figure ]2a-d

show typical multiple-exposure photographs of this flow field. In Figure 12a, at t*

= 2.2, the two symmetric eddies are clearly seen in the wake of the cylinder and

the closed vortex region is roughly the same size as the cylinder diameter. At a

later time, t* = 3.2, (Figure 12b) the eddies are still symmetrical but has grown

much larger. At a still later time, t* = 4.2, (Figure 12c) the asymmetry is just

beginning. Finally, at t* = 5.2, (Figure 12d) the flow field is completely

asymmetric and vorticity from the upper eddy is about to break away and move

downstream.

The velocity data are acquired in a square mesh by digital processing of the

Young's fringes, produced by point-by-point scanning of the positive contact copy

of the photograph (Lourenco, 1986). The scanning step size and the dimension of

the interrogating laser beam are both 0.5 mm, which, with the magnification of

0.40 corresponds to a spatial resolution of about 1.25 mm in the object plane. This

is about 1/20 of the diameter of the cylinder. The fringes were processed using the

methods described in Section 4. The resultant two-dimensional velocity fields,

corresponding to Figures 12a-d, are shown in Figures 13a-d are a good

representation of the expected flow pattern. The length of each vector in the

Figure 13 is proportional to the local velocity at that point.

Because of the high spatial resolution of these data, vorticity contours can be

derived by taking spatial derivatives of the velocity data. Letting each grid location

be labeled with indices (i j), the vorticity component at location (ij) is given by

= 1/2{(vi.lj- vi.lj)/2 x - (uij., - u j.1)/2aY} (29)

where _ij is the vorticity at point (i.i), U and V are the longitudinal and lateral

velocities, and Ax and Ay are the mesh intervals in the streamwise and

cross-stream directions, respectively. Figure 14a-d show the smoothed vorticity

contours, normalized with respect to the free steam velocity and the cylinder

diameter. To aid in the understanding of this flow, the value of vorticity can be
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(a)

(b)

Figure 12. Multiple-Exposed Photographs of the Wake Flow Field Behind a

Circuler Cylinder; a) t" = 2.2; b) t° = 3.2; c) t° = 4.2; d) t* = 5.2
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c)

(d)

Figure 12. Multiple-Exposed Photographs of the Wake Flow Field Behind a

Circular Cylinder (Concluded); a) t° = 2.2;b) t° = 3.2;c) t° = 4.2;d) t° = 5.2
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Figure 13.InstantaneousVelocityFieldofthe Wake Flow FieldBehind a Circular

Cylinder;a)t°= 2.2;b)t*= 3.2;c)t°= 4.2;d)t°= 5.2
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superposed on the velocity data of Figure 13. This is shown in Figure 15a-d,

where the vorticity is displayed by color coding each velocity vector. The color code

represents the vorticity level, the magnitude of which is given by the color bar on

the top of each figure. The red and blue colors represent the peak positive and

negative vorticity regions, respectively.

Analysis of these figures reveals some interesting features. Two primary regions

or high vorticity form at the rear of the cylinder, corresponding to the startup

vortices, while two secondary high vortieity regions are observed further outward.

This is especially clear in the vorticity contours shown in Figure 14. The primary

vorticity regions may possibly correspond to the "vorticity peak" reported by

Bouard and Coutanceau (1980), whereas the secondary regions may be related to

the breakup of the feeding sheet as suggested by the flow visualization of Tietjens

(1970). Also, it is interesting to observe that the vorticity field (Figure 14) displays

earlier evidence of asymmetry than the velocity field (Figure 13).

Using the velocity data of Figure 13, global wake characteristics can also be

determined. One example is the growth in the size of the closed vortex region, or

wake bubble, with time. Figure 16 displays the development of the wake length,

measured in terms of the distance between the cylinder surface and the saddle

point (zero velocity) where the two counter-rotating wake vortices join. These

values, which are plotted in terms of the non-dimensional time, t *, compare well

with available experimental data by Honji & Taneda (1969) and numerical

predictions by Loc (1980) and van Dommelen (1981). It was observed that the

distance between the two twin vortices remained constant at a value of about

0.55D, where D is the cylinder diameter, throughout the experiment. This is also

in good agreement with the observations reported by Honji & Taneda (1969).

6.2 Flow Past an Airfoil at Angle of Attack

The time-space development of the unsteady separated flow generated by an

NACA 0012 airfoil at an angle of attack of 30 deg. and started impulsively from

rest is studied in this section. The flow is created by towing the airfoil in the same

towing tank as described in the previous section. The airfoil chord is 60 mm and

was towed with a velocity of 22 mndsec. The eorresponding Reynolds number was

1400. In order to record the time development of the flow field, the camera was

attached to the towing carriage and the frequency which the multiple exposures

were taken was set at 2 Hz. Typical multiple exposure photographs of this flow

are shown in Figure 17. The photographic arrangement was purposely adjusted

to enhance the view of the flow field on the upper surface of the airfoil rather than

to show the entire flow around the airfoil. Consequently, the details of the flow
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Figure 17. Multiple Exposure Photographs ofthe Flow Over an Airfoilat Angle of
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under the airfoil cannot be seen clearly in these photographs. These photographs

display the flow field from the leading edge of the airfoil to a downstream location

of about 1-1/2 chords. The quadruple exposures shown here increase the SNR

(signal-to-noise ratio) as well as the fringe visibility and provide an excellent flow

visualization.

When the airfoil is at angles of attack of ten deg. or less, the flow is well behaved

and attached over the entire impulsive process. However, at larger angles of

attack (f, > 20 deg.), the flow separates on the upper surface of the airfoil and

generates large scale vortices. The photographs shown in Figure 17 reveal that

when the airfoil is first started, a vortex at the trailing edge, commonly referred to

as the "starting" vortex, is generated and is carried away from the body.

Concomitant with this is the generation of a separation bubble at the leading edge

of the airfoil. At a later time, the separation bubble grows into an isolated

primary vortex with secondary vortices following behind it. A similar type of

vortex structure was also observed in the flow behind a circular cylinder. This

multiple vortex structure continues to grow together and move along the upper

surface until it reaches the trailing edge. At this point the primary vortex

induces a vortex at the trailing edge. At a later time the primary vortex abruptly

moves away from the surface of the airfoil leaving behind a vortex-sheet-like

structure. This vortex sheet rolls up into distinct vortices and they grow in size

with time. During this process the trailing edge vortex also grows, creating a

very complex flow field. Close to the surface of the airfoil a small vortex remains

present for t* • 3.0. This vortex has the same sign as the trailing edge vortex. A

similar vortex structure was observed by He (1986), who call it an "induced vortex"

and associates it with the unsteady separation phenomenon.

Typical measurements of the instantaneous velocity fieldare shown in Figure 18.

The data are presented in a body-fixed reference frame. The starting vortex and

the initialseparation bubble at the leading edge can be seen clearlyat t* = 0.68. At

t* = 2.02 the primary vortex with the secondary vorticesbehind itcan be seen. The

trailing edge vortex has just formed and is starting to move downstream at t" =

3.02. Also, at t*> 3, the vortex sheet structure described in the previous

paragraph can be seen. This structure may be attributed to the interference of tip

vorticesgenerated at the tipsof the wing.

Two-dimensional computational results from random-walk vortex simulations of

the fullNavier-Stokes equations are shown in Figure 19. The angle of attack and

the Reynolds number are the same as those in the experiment. The streamline

pattern, along with vorticity,which is represented in bit-mapped grnphics as half
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Figure 19. 'IXvo-Dimensional Computational Results of the Flow Field Over an

Airfoil at Angle of Attack; a) t" = 0.5; b) t" = 1.0; c) t" = 2.0; d) t" = 3.0; e) t° = 4.0;

t" = 5.0
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tones are shown in the figure. Except for the effect of the finite aspect ratio of the

airfoil, the streamline patterns look very similar to the patterns observed in

Figure 17. To further evaluate these results, the locus of the primary vortex as it

develops in time is shown in Figure 20. The computational results agree well

with the experiment for t* < 2. Beyond this time, it is expected that the

experimental flow field was influenced by the tip vortices, making the flow three

dimensional. The coefficients or lift and drag as obtained from the computations

are shown in Figure 21. As expected, the coefficient of lift increases with t ° up to

a point where the primary vortex is attached to the upper surface. For later

times, where the primary vortex leaves the upper surface, the coefficient of lift

drops significantly.

6.3 Three-Dimensional Turbulent Jet Flow

The flow field considered is a three-dimensional incompressible jet of air issuing

f_'om a rectangular nozzle of aspect ratio 4. Tim structure _lnd development of"

such a jet is markedly different from those issuing from two-dimensional or

axisymmetric nozzles, the focus of most previous investigations on turbulent jets

(e.g., Krothapalli, Baganoff, and Karamcheti, 1981). With renewed interest on

thrust vectoring and mixing devices, emphasis is now shifting to the study of

three-dimensional nozzles. The structure and development of these jets contain

many interesting features and are yet to be thoroughly understood. One such

feature is the "cross-over" phenomenon, which is generally characterized by the

switching of the major and minor axes downstream of the nozzle exit. Recent

experiments, conducted by Ho and Gutmark, (1987) on low aspect ratio elliptic jets

suggest that an initial instability process, which is accompanied by large vortices,

m,_y influence the position of the cross-over point, and thus the development of the

jet. The example described here examined the structure and growth of the

mixing layer region of the jet. Additional details may be found in Lourenco and

Krothapalli, (1988) and Lourenco, Krothapalli, and Smith (1988).

A simple low speed air supply system was used to provide the airflow to a

cylindrical settling chamber 27 cm in length and 10 cm in diameter. A

honeycomb and a series of screens at tl_e inlet of the nozzle are used to further

reduce flow disturbances. The cross section of the contraction changes from a

circular cross section, 10 cm in diameter, to a rectangular cross section, 3 cm by

0.75 cm. The contraction contours in the two central planes were fifth-order

polynomials. Seeding of the jet was accomplished by using a theatrical-type

smoke generator, which produces smoke particles in the sub-micron range.

Smoke and ambient air were mixed in a large settling tank and then supplied to
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the settling chamber of the jet using a small axial fan. A second smoke generator

of the same type was used to seed the outside ambient flow surrounding the jet. A

schematic of the arrangement is shown in Figure 22. The mean velocity at the exit

of the jet was 4.5 m/see. This resulted in a Reynolds number of 3600, based on the

hydraulic diameter (four times the nozzle area divided by the perimeter). Basing

the Reynolds number on the jet width (0.75 cm) gives a value of 2250, which may

bc more appropriate when discussing the stability of the jet. The mean velocity

profile at the exit plane of the nozzle was flat with a laminar boundary layer at the

walls.

The laser light sheet was created with a frequency doubled, double-pulse Nd:Yag

laser, with a similar inverse te]escope lens/cylindrical lens arrangement as

described in Section 6.1. The laser sheet was 60 mm wide and illuminated the

central plane through the small dimension of the nozzle (i.e., the X-Y plane in

Figure 22). Two laser pulses with a duration of l0 nsec and a separation of 50

microsec were used to create the speeklegram. The pulse separation of 50

microsec is much smaller than any relevant time scale of the flow field and thus

the double exposure photograph truly represents a flow field at a given instant of

time. The velocity bias technique, described in Section 5, was used to resolve the

ambiguity of the velocity vector. A 35 mm camera was used to record the

specklegram, using Kodak TMAX 400 ASA film, which has good sensitivity at the

frequcncy of the illuminating laser light. The magnification was 0.50.

Typical double-exposure photographs of the jet, taken at two different times, arc

shown in Figure 23. These pictures display the flow field from the nozzle exit to

about eight jet widths downstream. The photographs were taken using the

velocity shift technique described in Section 5 and with externa] seeding of the

ambient medium. From these results, along with other pictures, several

observations can be made. The jet consists of three regions: the region in which

the initial shear layer is unstable and rolls up into discrete vortices; an

interaction region in which the vortices pair with each other; and a region in

which the vortices break up into random, three-dimensional motion. In spite of

the relatively large aspect ratio of the nozzle exit (AR = 4), the rectangular jet

organizes itself into a structure similar to that of an axisymmetric jet, as shown

by Bouchard and Reynolds, (1982). The pairing process is also quite similar. In

this process, the trailing vortex catches up with the leading vortex, decreases in

size and passes through the leading vortex, which has slowed down and grown in

size. The vortex cores rotate around each other and ultimately merge, producing

a single vortex. A number of vortex pairings can occur before vortex breakdown

occurs. Figure 23b shows such a vortex pairing in progress. The physical

58



Y,V

W,Z_

X,U

Figure 22. Schematic of Three-Dimensiona] Jet Expcrimcnt

59



(a)

Figure 23. Instantaneous Double-Exposed Photographs of the Central Plane oF

the Jet
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Figure 23. Instantaneous Double-Exposed Photographs of the Central Plane of

the Jet (Concluded)
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regions where these phenomena takes place overlap and depends on the phase of

the development of the jet. The jet Strouhal number, St (non-dimensional passage

frequency of the vortices prior to pairing), is given by St = fw/U, where f is the

passage frequency, w the nozzle width, and U is the mean exit velocity of the jet.

For this experiment, St is estimated to be about 0.7. This Strouhal number is close

to that measured for an axisymmetric jet by Becker and Massaro, (1968), at a

comparable Reynolds number. Examination of several photographs suggests that

the vortex breakdown enhances the mixing in the plane of the small dimension of

the nozzle. No increase in mixing was observed in the central plane containing

the long dimension of the nozzle.

The instantaneous velocity field, for two typical phases of the development of the

jet, arc shown in Figure 24. In this figure the velocity is given in the laborator.v

reference frame; that is, the velocity bias has been removed. The length of each

vector is directly proportional to the magnitude of the velocity. Because the

velocity gradients are largest in the transverse direction, the velocity data were

acquired using a rectangular mesh with a mesh spacing of 2 mm in the jet axial

direction and 0.5 mm in the jet transverse direction. The velocity fields displayed

in Figure 24 describe in great detail all of the aforementioned regions of the jet

flow field, from the initial shear layers to regions with highly three-dimensional

motion. Such an accurate and detailed representation of the flow field was a

consequence of the .use of the velocity bias technique together with judicious

management of the seeding.

Examination of these velocity fieldsfurther reinforces the previous analysis made

on the basis of the flow visualization pictures. The jet structure is further

enhanced by presenting the velocity fieldin a reference frame with a convection

velocity of the vortical structure, estimated at about 70 percent of the jet exit

velocity,as shown in Figure 25. In this reference frame, the large scale vortical

structures are clearly observed which shows the nature of the symmetric

instability. The instantaneous velocity profiles provide a unique means to quantify

the extent of the jet unsteadiness, the existence of the coherent motions, their

interactions, and subsequent generation of the random three-dimensional

nmtions. As an example, Figure 26 shows the instantaneous distribution of the

axial centerline velocity along the jet axis obtained from the data of Figure 24. As

expected, the centerline velocity distribution is phase dependent and does not

display a monotonic behavior as commonly observed in mean velocity

distributions. The peaks and valleys in this phase-dependent distribution are a

consequence of the vortex dynamics. Thus, a complete understanding of the

structure and development of the jet must include a detailed study of the time

evolution of the whole flow ficld.

62



• - L - - " : : • - • : : ; ; " :- - - ' • P_ f._ P- -_.

......... : . _ Y, _ ,;- ".f._.--.--_. ,.... . ,-,- ,,_

........... J ........ $:, ..- _ _
: : : : • . : : - : : : : : : , - ,. _ ,_ :, ,,': _ _,

_ ;.. _ .. - _--, _ _, .,--. ,_,_., _ .......... , _ ,- _ .....

....... I - - 1 t ...........

• , • , • , , , • . . . . . .- . . , , • ;. _ #

Figure 24. Instantaneous Two-Dimensional Velocity Field in the Central Plane of

the Jet

63



Figure 25. Instantaneous Two-Dimensional Velocity Field Shown in the Reference

Frame with a Convection Velocity of the Vortical Structures.
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7. Recent Developments

7.1 High-Speed Measurements

A recent study by Kompenhans and Hocker, (1988) has demonstrated conclusively

that PIV can be successfully applied to the study of high-speed flows. In their

experiment, a pair of Nd:Yag lasers were combined by means of polarizing

prisms. The schematic of this system is shown in Figure 27. Utilizing a digital

clock to control the exact time delay between the two pulses, they studied the flow of

a circular jet at exit Mach numbers ranging from 0.1 to ahnost 1. The seeding

particles, created by injecting pressurized air into olive oil, were of the order of 1

_m in diameter. The flow facility consisted of a 15 mm diameter circular air jet, at

ambient temperature. The Reynolds number, based on jet diameter, ranged from

4x104 to 3x105. Both the jet flow and the ambient air outside the jet were seeded in

order that the particle concentration in the shear layer region, where ambient air

is entrained into the jet, was sufficiently high to yield good results. The

multiple-exposure photographs were analyzed using the Young's fringes

technique.

7.2 Three-Dimensional Measurements

Until recently, applications of P1V have been limited to two-dimensional flows.

The physical limitation of the system is that the particle must be in the illuminated

sheet during both exposures. Any out-of-plane motion of particles into or out of

this sheet reduces the particle correlation and can result in a loss of the signal.

However, many flows of interest are three-dimensional and ways of extending PIV

to the study of such flows are of obvious interest. One such method, pioneered by

Riethmuller and his colleagues at the yon Karman Institute (VKI), is described in

this section, which summarizes the work presented by Gauthier and Riethmuller

(1988).

The VKI method is a stereoscopic scheme in which the flow in the illuminated

plane is viewed from two different directions simultaneously. Thus, with this

technique measurements over a single plane are still made, but all three

components of velocity are obtained. The constraint is that the time delay between

exposures must be chosen such that the maximum particle motion normal to the

illuminated plane is much less than the thickness of the sheet. With this scheme

it is often necessar T to add a velocity bias to the particle images to keep them in the

range of the analysis system.

In the stereoscopic method tile flow is the Flow is viewed from two different
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directions and the three velocity components are obtained from their projections

and the geometrical characteristics of the optical system. Two different

stereoscopic systems have been tried thus far by the VKI group. The first is called

an angular displacement method and is one in which the optical axes are not

perpendicular to the illuminated sheet but are inclined at an angle _ to the normal

to tile sheet, as shown in Figure 28. To estimate the error in measuring the

displacement, Gauthier and Riethmuller considered a displacement of 250 lam at

an angle of 0 to the illuminated plane, a magnification of 0.4 and a resolution of 2.5

lam. Results are shown in Figure 29. The error is minimized when the optical

axes are at an angle of 45 deg. to tile illuminated plane, and for small values of 0

(which can be obtained by superposing a velocity bias to the flow if necessary).

The second stereoscopic scheme is referred to as the translation method and is

shown schematically in Figure 30. In this technique the optical axis of each

camera is perpendicular to the illuminated sheet and the distance between the two

axes provides the stereoscopic effects. The error associated with this method is

shown in Figure 31 for the same conditions as in Figure 29. Although the error

decreases with increasing distance between the two optical axes, so does the

overlap or common area recorded by the two cameras.

Gauthier and Riethmuller applied each of these methods to a simulated 3-D flow

by measuring the uniform flow in a rectangular duct (25x40 mm) with a laser

sheet at an angle of 20 deg. to the duct axis, as shown in Figure 32. The velocity

was 5 m/s (no velocity bias was used), the magnification was 0.5, and the time

between exposures was 50 _s. The scatter in the out-of-plane displacement for the

two methods is shown in Figure 33. There is a large scatter of 32 deg. in the

measurements using the translation method, and a scatter of 8 deg. with the

angular displacement method. These results confirm the predicted errors in

Figures 29 and 31, which indicated better accuracy for the angular displacement

method. These basic experiments demonstrate the applicability of PIV for the

instantaneous measurements of the three components of velocity in a plane of a

fluid flow.

7.3 Suggestions for Future Work

Although some success in demonstrating the applicability of this technique on

high-speed flows and three-dimensional flows has been demonstrated, much work

remains to be done. For example, application of PIV to the study of
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Figure 28. Stereoscopic Angular Displacement Method, from GauthJer and

Riethmuller, (1988)
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Figure 30. Stereoscopic Translation Method, from Gauthier and Riethmuller,
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three-dimensional flows with large velocity gradients, such as the tip vortex wake

behind an aircraft wing, will require much study. Also, the relationship between

the laser sheet thickness, the flow quantities (such as velocity, spatial resolution,

time and length scales), and the processing techniques needs additional study.

Finally, the use of P!_ r as a means to validate CFD (computational fluid dynamics)

codes is a fruitful area for further work.

8. Conclusions

The concept of Particle Image Vclocimetry has been described and shown to be

applicable to the study of flows with vortical motions. At present, most of the work

in this field has been towards developing the technique itself, and very little has

been done in applying this technique to fluid flows of research interest. Most of the

work to date has been limited to low speed, primarily two-dimensional flows,

although some research has been done to extend the technique to higher speeds

and all three dimensions. The use of dual systems {i.e., two lasers to study high

speed flows and two recording systems to study three-dimensional flows) looks

especially promising. These activities should be continued. One area that has

received very little attention to date is an effort to increase the size of the viewing

area. Most research has been done on small, laboratory-type experiments and a

field in which PIV would prove especially useful is the study of wind tunnel flows.

A means to measure three-dimensional, unsteady, vortical flow fields in wind

tunnels at high speed and high Reynolds number and on a regular basis would

increase the productivity of these facilities by several orders of magnitude.

75



9. P_efer_aces

Adrian, R.J.;"An Image Shifting Technique to Resolve Directional Ambiguity in

Double-Pulsed Laser Velocimctry", AUDI. ODt.. vol 25, pp 3855-3858, 1986.

Becker,H.A. and Massaro,T.A.;"Vortex Evolution in a Round Jet", J. Fluid

Mech., vol 31, pp 435-448, 1968.

Born,M. and Wolf, E.:Princil)les of Optics. Pergamon Press, 1980.

Bouard,R. and Coutanceau,M.;"The Early State of Development of tile Wake

Behind an Impulsively SL_rLcd Cylinder for 40<Re<I04".J. Fluid Mech., vol. 101,

pp 583-607, 1980.

Bouchard,E.E. and Reynolds,W.C.;"The Structure and Growth of the Mixing

Layer Region of a Round Jet", Rept. TF-]7, Thermosciences Division, Dept. of

Mech. Engrg., Stanford Univ., 1982.

Collicott, S.H. and Hesselink, L.;"Anamorphic Optical Processing of Laser

Speckle Anemometer Data", Bull. Amer. Phys. Soc., vol 30, pg 1728, 1985.

Collier, R.J., Burckhardt, C.B., and Lin, L.H.;Optica] Holo_rauhv. Academic

Press, New York, 1971.

Dimotakis, P.E., Debussy, F.D., and Koochesfahani, M.M.;"Particle Streak

Velocity Field Measurements in a Two-Dimensional Mixing Layer", Phys. Fluids,

vol24, pp 995-999, 1981.

Elkins, R.E.,III, Jackman, G.R., Johnson, R.R., Lindgren, E.R., and Yoo,

J.K.;"Evaluation of Stereoscopic Trace Particle Records of Turbulent Flow Fields",

Rex'. Sci. Instrum., vol 48, pp 738-746, 1977.

Err, R.K.;"Application of Laser Speckle to Measurement", in I,aser Anu)ications,

vo] 4, ed. by Goodman, J.W. and Ross, M., Adademic Press, New York, 1980.

Frish, M.B. and Webb, W.W.;"Direct Measurement of Vorticity by Optical Probe",

J. Fluid Mech., vol 197, pp 173-200, 1981.

76



Gauthier,V. and Rie_.hmuller,M.L.;"Application of PIDV to Complex

Flow:Measurement of the Third Component", VKI Lecture Series on Particle

Image Displacement Velocimetry, Brussels, Mar. 1988.

Gharib, M., Dyne, B., Thomas, O., and Yap, C.;"Flow Velocity Measurements by

Image Processing of Optically Modulated Traces", AGARD CP-413, 1987.

Ho,C.M.;"An Alternative Look at the Unsteady Separation Phenomenon", Recent

Advances in Aerodynamics. ed. by A.Krothapalli and C.A.Smith,

Spt-inger-Verlag, pp 165-178, 1986.

Ho,C.M. and Gutmark,E.;"Vortex Induction and Mass Entrainment in a Small

Aspect-Ratio Elliptic Jet", J. Fluid Mech., vol 170, pg. 383, 1987.

Honji,H. and Taneda,S.;"Unstcady Flow Past a Circuhlr Cylinder", J. Phv. Soc. of

_, vol 27, pp 1668-1677, 1969.

Kompenhans, J. and Hocker, R.;"Application of Particle Image Velocimetry to

High Speed Flows", VKI Lecture Series on Particle lnulge Displacement

Velocimetry, Brussels, Mar. 1988.

Krothapalli,A. Baganoff, D. and Karamcheti,K.;"On the Mixing of a Rectangular

Jet", J. Fluid Mech., vol. 107, pg 201, 1981.

Landreth, C.C., Adrian, R.J., and Yao, C.-S.;"Double Pulsed Particle Image

Velocimeter with Directional Resolution for Complex Flows", Experiments in

Fluids, vol 6, pp 119-128, 1988.

Loc,T.P.;"Numerical Analysis of Unsteady Secondary Vortices Generated by an

Impulsively Started Circular Cylinder", J. Fluid Mech., vol. 100, pp 111-128, 1980.

Lourenco, L.;"The Fundamentals and Application of Particle Image

Displacement Velocimetry", yon Karman Institute Lecture Series, Belgium, 1986.

Lourenco, L.;"Application of Laser Speckle and Particle Image Velocimetry in

Flows with Velocity Reversal", Bull. Amer. Phv. Soc., vol 31, no 10, 1986.

77



Lourenco, L.M., Krothapalli, A., Buchlin, J.M., and Riethmuller, M.L.;"A

Non-Invasive Experimental Technique for the Measurement of Unsteady Velocity

and Vorticity Fields", Acrodynamic and Rclated Hydrodynamic Studies Using

Water Facilities, AGARI) C1'-41"1, paper 23, Monterey, CA, 198(i.

Lourenco, L.M. and Krothapalli,A.;"The Role of Photographic Parameters in

Laser Speckle or Particle Image Displacement Ve)ocimetry", Exo_rimenls in

Fluids, vol 5, pg 29-32, 1987.

Lourenco, L.M. and Krothapnlti,A;"lnstantaneous Velocity Field Measurements

of a Turbulent Rectangular Jet (AR = 4) Using Particle Image Displacement

Velocimetry", AIAA paper 88-0498, 26th Aerospace Sciences Meeting, Reno, Jan.

1988.

Lourenco, L.M. and Krothnpalli,A.;"Application of PIDV to the Study of the

Temporal Evolution of the Flow Past a Circular Cylinder", I,sser Anemometrv in

Fluid Mechanics-III, Ladoan-Institute Superior Tecnico, Lisbon, Portugal, pg

161, 1988.

Lourenco,L., Krothapalli,A., and Smith, C.A.;"On the Instability of a

Rectangular Jet", Intl. Syrup. on Laser Velocimetry, Lisbon, Portugal, July 1988.

Lourenco, L. and Whiffen, M.C.;"Laser Speckle Methods in Fluid Dynamics

Applications", Prec. Intl. Syrup. on Appl. of Laser Anemometry of Fluid

Mechanics, Lisbon, 1984.

Meynart, R.;"Equal Velocity Fringes in a Rayleigh-Benard Flow by the Speckle

Method", A_Dl. Oat., vo] 19, pg 1385, 1980.

Prandtl, L., _/. Roy. Acre. See., vol. 31, pg. 730, 1927.

Simpkins, P.G. and Dudderar, T.D.;"Laser Speckle Measurement of Transient

Benard Convection", J. F_uid Mech., vol 89, pp 665-671, 1978.

Smith, C.A., Lourenco, L.M.M., and Krothapalli, A.;"The Development of Laser

Speckle Velocimetry for the Measurement of Vortical Flow Fields", AIAA paper

86-0768-CP, 14th Aerodynamic Testing Conf., West Palm Beach, Mar. 1986.

Stetson, K.A.;"A Review of Speckle Photography and lnterferometry", O_t. F,n_.,

vol 14, pp 482-489, 1975.

78



Tietjens,O.;_L_, 1st Edition, vol. 2, Springer-Verlag, Berlin, pp

]05-109, 1970.

Van Dommelen,L.L.;"Unstcady Boundary Layer Separation", Ph.D. Thesis,

Corncll University, 1981.

Yao, C.-S. and Adrian, R.J.;"Orthogonal Compression and 1-D Analysis

Technique for Measurement of 2-D Particle Displacements in Pulsed Laser

Velocimetry", AnDI. Oot., vol 23, pp 1687-1689, 1984.

79





APPENDIX II

_°mlR.__..jEauml _



_'2: :k



By L. M. LOUREN_O AND A. KROTHAPALLI

THE FLORIDA STATE UNIVERSITY
FAMU/FSU Col]eRe of Engineering

Dept. of Mechanical Engineering
Tallahassee, Florida 32306

APPLICATION OF PIDV TO THE STUDY OF THE TEMPORAL

EVOLUTION OF THE FLOW PAST A CIRCULAR CYLINDER

_rom the book *Laser Anemometr3" Lr. Fluid Mechamct_,

Pubii*hed by l.adoan- ]nsrizuto Supeno: T¢cni¢o

1096. Lisbon Codex- Porlugsl

19f-g

PRECEDING PAGE BLANK NOT FILMED



Application of PIDV to the study of the temporal evolution

of the flow past a circular cylinder

By L. M. LOUREN(_O AND A. KROTHAPALLI

THE FLORIDA STATE UNIVERSITY
FAMU/FSU College of Engineering

Dept. of Mechanical Engineering
Tallahassee, Florida 32306

A novel experimental technique is being developed for the field measurement
of instantaneous velocity in unsteady or steady fluid flows. The main advantage
of this technique is that the velocity field data is measured with sufficient
accuracy so that the distribution of vorticity can be calculated with reasonable
accuracy.

This technique which is ideally suited for the study of unsteady vortical
flows, has been utilized to measure ihe time development of the near-wake flow
field crea'ed behind a circular cylinder impulsively started from rest.

A detailed explanation of the basic principles of the technique as well as a
discussion of some of the important parameters that affect its use are included
in this paper.

1. Introduction

One of the most challenging problems in experimental fluid mechanics
remains the measurement of unsteady vorticity field and associated physical
variables such as velocity and pressure. Local measurements of the velocity field

are now done routinely in many experiments. However, a great deal of flox_: fields
of current interest, such as coherent structures in shear flows are highly unsteady.
Hot-wire or laser doppler velocimeter data of such flows are difficult to interpret
as both spatial and temporal information of the entire flow field are required,
and these methods are commonly limited to simultaneous measurements at only
a few spatial locations. Recent]y, a novel velocity measurement technique,
commonly known as Laser Speckle or Particle Image Displacement Velocimetrv
has become available (Adrian & Yao (1985), Louren_o & Whiffen (1984i,
Meynar_ (1980), Simpkins & Dudderar (1978). This technique provides the
simultaneous visualization of the two-dimensional streamline pattern in unsteady
flows as we]] as the quantification of the velocity field over an entire plane.
The advantage of this technique is that the velocity field can be measured over

an entire plane of the flow field simultaneously, with accuracy and spatial
resolution. From this, the instantaneous vorticity field can be easi}y obtained.
This constitutes a great asset for the study of a variety of flows that evolve
stochastically in both space and time. In this paper some of the results obtained
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in a measurementof the time-space development of the near-wake of an impul-
sively started circular cylinder are presented. In addition, the basic principles
of operation of LSV or PIDV are introduced and a discussion is made on some
of the parameters that affect its utilization.

2. Principle of the technique

The application of LS\" or PIDV to fluid flow measurement involves several
steps. First, it is necessary to ,,create,, a selected plane or surface within the flow
field. This is accomplished by seeding the flow with small tracer particles,
similarly to LDV applications, and illuminating it with a sheet of coherent light,
as shown in figure 1. A pulsed laser such as a Rub), or a NdYag laser, or a CW

LASER

CYLINDRICAL
LENS

SEEDED
.,,'°F

..... FLOW

';::¢=

f

FIGURE 1.

LAS E R

SHEET

TEST SECTION

IMAGING ._LENS

PHOTOGRAPHIC

PLANE

Schematic of the set up for photograph',.

laser with a shutter is normally used as the light source. The laser sheet is
formed, for example, by focusing the laser beam first with a long focal length
spherical lens, to obtain minimum thickness, and then diverging the beam in
one dimension with a cylindrical lens. The light scattered by the seeding particles
in the illuminated plane provides a moving pattern. When the seeding concen-
tration is low, the pattern consists of resolved diffraction limited images of the
particles. When their concentration increases, the images overlap and interfere
to produce a random speckle pattern. A multiple exposure photograph records
this moving pattern. The lower particle concentration is a mode of operation of
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thetechniquereferred to as Particle Image Displacement Velocimetry, reserving
the term Laser Speckle Velocimetry for the high particle concentration levels
where a random speckle pattern is actua]]v formed. In a second step the local
fluid velocity is derived from the ratio of the measured spacing between the
images of the same tracer, or speckle grain, and the time between exposures.

Several methods exist to convert the information contained in the multiple-
exposed photograph, or specklegram, to flow field data such as velocity or
vorticity. The recorded image, whether formed by isolated disks, in the case of
low particle concentration, or speckle grains for high particle concentration is a
complicated random pattern. It would be very difficult to measure the local
displacements b.v visual or computer-aided inspection. However, it is important
to realize that the multiple exposure photograph results in a periodic random
image from which the periodiciI3' information can be retrieved using Fourier
or Autocorre]ation analysis. Basically, the multiple-exposed photographs or
speck]egrams can be analyzed either on a point-by-point basis, which yields
measurements of the local displacements (velochy), (Adrian & Yao (1985),
Loureng:o & Whiffen (1984D or with a whole field filtering technique, which
yields isovelocity contours Meynart (1980). Recently an anamorphic optical
system has been proposed Collicott & Hesselink (1985). This method performs
a I-D Fourier transform in the x-direction for measuring the x-velocity compo-
nent, and images the speckle pattern in the y-direction. This results in curved
fringes which have a local spacing inversely proportional to the x-velocity at
that point. Simultaneous muhiple point measurements are obtained by imaging
in the ),-direction. Thus it is possible to measure a velocity component along a
_elected line in the flow. The most current methods of ana)ysis are point-bypoint
techniques. The first one which is being developed and used by Yao & Adrian
(1984), consists of measuring directly the image pair spacings in the photographs,
using an autocorrelation technique. However, unlike the usual full 2-D auto-
correlation or Fourier techniques which require a computation of large data arrays
and are generally inefficient, this method reduces the general N × N element 2-'D
problem to two N element 1-D problem by compressing the information, in the
photograph, in orthogonal directions using integration. The other method, which
has been selected and implemented by the Fluid Mechanics Research Laboratory
at the Florida State University, is the Young's fringes method Lourengo & Whiffen
(1984). The local displacement is determined using an focused laser beam to
interrogate a small area of the multiple exposed photograph transparency. The
diffraction produced by coherent illumination of the multiple images in the
_legative generates Young's fringes, in the Fourier plane of a lens, provided that
the particle images correlate. This is shown schematically in figure 2. These
tringes have an orientation which is perpendicular to the direction of the local
displacement and a spacing inversely proportional to the displacement. The use
of Young's fringes eliminates the difficulties of finding the indviidual image
pairs in the photograph. The basis of the Young's fringe method can be described
as in the following.

Consider the function D(r) describing the light intensity in the image plane

of a photographic camera, where r (x, y) are the plane coordinates. Considering
that there is an in-the-plane displacement dy of the scatterers, the image will be
translated by Mdy. where M is the magnification of the camera tens. and the
resulting intensity distribution is

Dtx, y) ÷ D(x,y-Mdy) = D(x,y) ® [8(x,y)÷8(x,y--' Mdy)] (1)

where 8(x,y) is the Dirac delta function centered on r(x,y), and considering
that a translation can be represented as a convolution with a delta function.
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The total intensity is recorded on photographic plate. After development the
transmittance, "., of the negative is given by

":(r) = a+bD(x,y) ® [$(x,y)+$(x,y+Mdy)] (2)

where a and b are characteristic constants of the photographic emulsion. Local
analysis of the film negative with a probe laser beam, figure 2, produces in the

Film
He Ne Loser

Imoge Plane

FIGURE 2.

Fourier Plane

Schematic of the set up for obtaining Young's fringes.

far field an optical two-dimensional Fourier transform of the transmittance
distribution, with an intensity distribution as follows:

-(u, v) = aS(u, v) + bD(u, v) [1 +exp(i2r.vMdy/A,] (5)

where ='. represents the Fourier transform of "., u and v are the angular coordi-
nates of a point in the Fourier plane, x, is the wavelength of the interrogatin_
laser light beam. The first term, _(u, v) on the r.h.s, of equation represents the
image of a point source, i.e. the interrogating beam, when diffraction effects are
neglected. This image is seen as a small bright spot in the center of the Fouriei

plane. The second term is composed by a fine speckle structure D modulated by

[ 1 + exp(i2r.vMdy/,L] (4)

The intensiLv distribution for the second term is obtained by multiplication
with its complex conjugate, resulting in

:'D(u, v) I: [4cos" (r,vMdy/X,)] tS)
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The diffuse background, 'DI 2 called ,diffraction halo,_ is modulated by a
set of Young's fringes whouse spacing is given by

A_ fL
dr -- (6)

Mdy

where ft. i., the focal length of the converging lens. Knowing M, ft.,;,, and
measuring dF the displacement d.v is easily tound from equation (6), with the
direction of motion perpendicular to the orientation of the fringes.

By scanning the double exposed photograph one can resolve the two compo-
nents of the velocity vector at ever) point of the field. This is a unique feature
of this technique.

3. Limitations of the laser speckle mode

The Laser Speckle mode of operation relies upon identical, laterally shifted
speckle patterns. Slight out-of-plane motion of the scatterers, due to three-dimen-

sional motions in the flow, will result in speckle patterns that are not entirely
similar. As a consequence, the correlation between patterns decreases and ti_e
fringe pattern, produced by local coherent illumination, is suppressed or elimi-
nated. This poses a severe limitation in the use of the Laser Speckle mode for
the study of turbulent flows or flows with a significant velocity component in
the direction perpendicular to the laser sheet. However, the fringe quality is
less dependent on the out-of-plane motion in the Particle Image mode of opera-
tion. In this case the tolerance to out-of-plane motion is roughkv equivalent to
the width of the illumination sheet and depth of field of the recording optics.
For this reason we use almost exclusively the Particle linage mode of operation.
An additional disadvantage with speckle mode of operation is that the seeding
in large scale flows or high speed flows can become exceedingly difficult and
expensive as the required concentration increases. Finally, the high concentrations
of tracer particles required by the Laser Speckle mode may influence or distort
the flow field being studied.

4. Experimental facilities and procedures

The time-space development of the near-wake flow behind a circular cylinder
impulsively ac_'elerated to constant velocity were examined using Particle Displa-
cement Velocimetry. The flow is created by towing the circular cylinder in the
reduced scale Fluid Mechanics Research Laboratory towing tank facility. The
tank is 300×200×600mm. A detailed examination showed that the motion of

the towing carriage is smooth and vibration free. The towing carriage is driven
by a variable D.C. motor, and the towing velocity can vary from 0 to 100 mm/sec.
For the photograpl-y, a 35 mm camera (Nikon F-3) is used. To photograph the
flow at regular time intervals, the photographic camera has a electric winding
device. The photographic time interval available with this camera can be conti-

nuously varied up to a maximum of 6 frames per second. Two options are
available to fix the camera: one by attaching it to the towing carriage, which
means an observation point fixed in relation to the model, and the other by
attaching it to the frame of the water tank, which means an observation point
fixed in relation to the fluid. The selection of these two depends upon the flow
field being photographed.
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In this experiment the circular cylinder is 25.4 mm in diameter and is
towed with a velocity of 22 mm/sec. The corresponding Reynolds number was
550. The fluid used in this experiment was water seeded with 4 _m metallic
coated particles (TSI model 10087). For the illumination, a laser beam from a
5 Wan Argon-Ion Laser (Spectra-Physics serie._ 2000) is steered and focused to

a diameter of 3 mm using an inverse telescope lens arrangement. A cylindrical
lens, with a focal length of --6.34 ram, is used to diverge the focused beam in
one dimension, creating a light sheet. The laser sheet is 70 mm wide and illumi-

nates the mid-span section of the cylinder. For the multiple exposure, the CW
laser beam is modulated using a Bragg cell. In this experiment, the laser power
density, I_, of the sheet was .27 W/mint. In order to record the time development
of the flow field, the camera was attached to the towing carriage and the
frequency of which the multiple exposures were taken was set at 1.7 Hz. The

aperture of the lens with a focal length of 50 mm and a spacer of 12 mm, was
set at F :¢:5.6 and the resulting magnification factor was 0.40. For the multiple
exposure, the time between exposures, T, and the exposure time, t, are chosen
according to the criteria discussed in Louren_o & Krothapalli (1986), Louren_o
& Whiffen (1984). The frequency of exposures was optimized to achieve the
largest dynamic range, and was 30 msec. For optimum exposure, the exposure
time was 3 msec, which corresponded roughly to (dffMVmax), where D is the
analyzing beam diameter, V is the maximum expected velocity in the field and
d, is the particle image diameter expressed in terms of

d,- (d"p + d_) ½ (7)

with dp the particle diameter and d, the edge spread caused by the limited
response of the recording optics Adrian & Yao (1985). The exposure time and
the time between exposures together with the particle image size diameter
determine the technique's velocity dynamic range, defined as the largest velocity
difference that can be detected in the flow field as follows Lourengo (1986i.

(V... --V._,.)/ V.._ = [(D--2d,) / 2Md_] - 1 = 6 (8)

5. Results

In this experiment the flow was captured a: several stages of its development
corresponding to t" =0.6, 1.2, 1.8.2.2.2.8.3.2.3.8, 4.2.4.9, 5.2, with t" =tU/D.
the non-dimensional time, where t is the time from startup, U is the free stream
ve]oci D" and D is the cylinder diameter. Figure 3 a-d are typical triple exposed
photographs of the flow field. As shown (Louren¢o 1986), the triple exposed
photograph increase the SNR and fringe visibility. The velocity date is acquired
in a square mesh by digital processing of the Young's fringes, produced by
point-by-point scanning of the positive contact cop)' of the photograph (Lourenco
1986). The scanning step size and the dimension of the analyzing beam are
0.5 ram. which corresponds to a spatial resolution of about 1.25 mm in the

objecz plane or about 1/20 diameter of the cylinder. The fringes were processed
using the methods described in the following paragraph. The resultant two-
-dimensional velocity fields, corresponding in figures 3a-d are shown in figures
4a-d, are ,_ good representation of the expected flow pattern. The length of each
vector is proportional to the local velocity at the point.
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FIGURE 3. Triple exposed photographs of lhe wake f]o_ field; a) _=2.2; b) _=3.2;
c) _=,;.2; d) t_=52.
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c) t'=,.;_'; d) T'=5.2.
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Using the velocitydata, global wake characteristicssuch as the bubble

sizedevelopment versustime were determined.Figure 5 displaysthe development
of the wake length,measured in terms of the distance between the cylinder
surfaceand the saddle point (zero velocity)where the two counterrotatingwake

vorticesjoin.These values which are p]oncd in terms of the non-dimensional
time compare well with availableexperimental data by Honji & Tancda (1969)

and numerical predictionsby Loc (1980) and L. van Dommelcn (1981). Itwas
observed that the distancebetween the two twin vorticesremained constant at

a value of about 0.55 D throughout theexperiment.This isalsoin good agreement
with the observationsreportedby Honji & Tancda (1969).
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FIGURE 5. Development of the wake size with time.

Because of the high spatial resolution of these data, vorticity contours can
be derived by taking spatial derivatives. Letting each grid location be labeled
with indices i, j, the vorticit.v component at location (i, j) is

\'i--: ;,._--V_--,,j Ui--[_,j--Ui--Ui, j}n,, j = h 2 _x 2 _)' (9)

where '_x and .av are the mesh intervals in the stream wise and cross-stream
directions, respectively. Figures 6a-d show these smoothed vorticity Contours,
normalized with respect to the free stream velocity and cylinder diameter.
Analysis of ti_ese figures together with the velocity field (figures 4a-d) reveals
some interesting features.
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Two primary regions of high vonicity form at the rear of the cylinder

corresponding to the startupvortices,while two secondary high vortici_'regions

are observed further outward. The primary vordciry regions may possibly
correspond to the _vorticitypeak>> reported by Bouard & Coutanccau (1980)

whereas the secondary regions may be related to the breakup of the feeding
sheet as suggested by the flow visualizations of Tietjens (1979). Ir is interesting
to observe that the vorticity field displays earlier evidence of asymmet_, than
the streamline (velocity) picture.

6. Data processing

The fringe images were acquired and analyzed using the digital image
analysis system of the Florida State University FMRL (figure 7). This system
consists of the following components: a DEC LS1-11/73 host computer, Gould

, +
T T

L1 L2

._....... _, .---]

Camera

P T F
t. 3

PDP t11-73 --
Gould
IP-8500

FIGURE 7. Young's fringe anulysis sel up.

IP-8500 Digital image processor which includes four memory tiles for storage
of image data in a 512×512 formal with a resolution of 8 bit'per pixel, a frame
digitizer, a pipeline processor and a video output controller to convert digital to
analog information for display on a color monitor. The system also includes a

two-dimensional Klinger traversing mechanism with a controller for the purpose
of automatically scanning the film transparencies. Two methods are available
and used for fringe analysis (Louren_o & Whiffen 1984). The first one is an
interactive method in the sense that it requires the assistance of an operator.
The principle of the method consists of first obtaining a 1-D periodic signal
from the straight fringes. This is performed by determining the fringe angle in
relation to a pre-determined reference followed by an averaging of the lines of
the digitized picture as follows;

511
f(m)-- Y-_ I [m--(n-255) tancr.,n] 0<m<511 (10)

n=0

where l(m,n) represents the digitized picture, flm) is the resulting periodic
signal and is the angle of the fringes with the n axis.

The extraction of the frequency from this signal is straightfo_,ard. The
Fourier transform of f(m) displaying a peak at the frequency proportional to
the velocity component parallel to the m axis. However, due to low frequency
modulation of the fringes, which is a consequence of the non-uniform light
intensity distribution in the diffraction halo, it is sometimes difficult to identify
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this peak, especially if the fringes have low frequency. In order to remove this
modulation, the fringe signal is passed through a high pass fi]ter before pro-
cessing.

The advantage of the one-dimensional averaging technique is rapidity. The
computation, which includes the determination of the fringe angle by' the operator
and position updating of the film transparency scanning mechanism, is completed
in a few seconds, typica]h 7-8 sac. using the PDP 1]-73 computer.

The inconvenience of the one-dimensional averaging method is the need
for an external adjustment of the angle of the fringes bv an operator. This
problem can be by passed by computing the velocity components along indepen-
dent directions. Because each line of the fringe frame can be considered as a
noisy' periodic signal with variable phase, the automatic determination of a
velocity component can be performed only' by averaging over a quantity inde-
pendent of the phase. The autocorrelation for each ]ine or its Fourier transform
for the power spectrum satisfies this requirement. The m velocity component
can be computed from:

I 7"7. [l(m,n)I(m-+-u,n)] ]

511 m

g(u) = Y-'7. ' "_-""{m,n":tJjj --511<u<511 (I1)n=O "--"
rn

This algorithm has been implemented using the pipeline processor of the
Gould IP-8500 image processor to perform simultaneously' the autocorrelation
for all the lines of a frame. For an accurate estimate of the velocity.' magnitude
and directions, four of such full image operations, yielding four autocorrelation
functions, are required. From these the velocity, vector is determined by' selecting
the values of the comt)onents which have been computed from autocorrelation._

having the highest SNR. and visibility. In our configuration, the determination
of the velocity' vector requires 4-5 seconds.

A shortcoming of the autocorrelation technique is the difficulty, to measure
the velocity when the fringe density' is too low (less than five bright fringes.
including the central one). In this case. the velocity can often be evaluated by
the interactive one-dimensional averaging method. So. the two methods are
complementary.

7. Overall accurac.v of the technique

The overall accuracy of the technique is evaluated using the following
method. A uniform flow field is created by producing a multiple exposure photo-
graph of the still seeded water, in the water tank. with a camera moving at
constant speed. For the multit_le exeosure photograph a number of time between
exposures are used. thus resulting in r_hotographs with par'tide t)airs at different
knowr, distances. The ran_oe of time bem'een exposures as well as the distance
between corresponding particle images in the film p]ane are presented in Table 1.
A large number of points (100) of these photo(,raDhs (5_ are analyzed using the
methods described in Section 5. in order to obtain statistical information about

experimental errors. These uncertainties include error introduced during the
recording of the muhi,qe exposure _hotot_raph, such as the ones introduced by
distortion of the scene bein_ recorded by *he camera lens, limited film resolution,

and inaccuracies due to the processine_ al_orithms.
In the absence of a systematic bias, the standard deviation of the obtained

the film transparencies using the two techniques yields the same mean value
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velocitydistributionis anestimateof the mean measurement error Analysis of
with a nearly equal standard deviation (Table 1). The values in Table I indicate
that using these methods, inaccuracies of the order of 1-2 % are expected, It is
believed that these inaccuracies are due to a combination of the limited resolving

TIME BETWEEN

EXPOSURES tMSEC)

22.2

25,0

28.6

35..3

40.0

FRINGE

FREQUENCY

33.447

37.045

42.950

49.057

60,693

RMS F R I N Cr..T,

FREQUENCY

0.257

0.208

0.381

0.710

1.190

MEASURED

DISTANCE (uM)

194

218

249

291

350

TABLE 1

power of film using for recording (100 lines/min) and limited response of the
camera lens. Another source of error which is not accounted for in this analysis
is the one due in the spurious contributions on the in-plane displacement record-
ing by the out-of-plane motions (Lourenco & Whiffen J984, Lourengo ]986).

8. Conclusions

A technique for laser speckle velocimetrv has been briefly described. Measu-
rements of the earl?' near-wake development behind a impulsively started circular
cylinder, have been reported, which illustrated the ability of the to record.
unsteady flows with accuracy.

The technique has been shown to provide both f}ow visualization and
quantitative measurements, which include the velocity and vorticity fields.

This work is supported by NASA Ames Research Center under Grant
No. NAG-2-SI 4.
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Particle image displacement velocimetry measurements
of a three-dimensional jet

L. Lourenco and A. Krothapalli
Department of ,_4eehanical Engineering, Florida A&,_ Uniz_ersity/Florida State University College of
Engineering, P.O. Box 2175. Tallahassee, Florida 32316-2175
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A whole field experimental technique, commonly referred to as particle image displacement

velocimetry (PIDV), is used for the measurement of the instantaneous two-dimensional

velocity fields in the transition region of a three-dimensional jet issuing from a rectangular

nozzle with aspect ratio 4. The experiments were performed using an air jet at a Reynolds
number based on the hydraulic diameter of 3600. The rollup of the laminar shear layer into

vortices and their subsequent interactions are examined.

Particle image displacement velocimetry (PIDV) is an
attractive experimental technique for the nonintrusive mea-

surement of two-dimensional velocity fields in free shear lay-

ers dominated by quasideterministic large structures. It pro-

vides an instantaneous velocity field measurement capability

with good spatial resolution, from which the vorticity field

can be computed accurately.
Earlier investigations I": have been carried out using a

technique similar to PIDV to study the mixing region of an

axisymmetricjet. However, as a result of the limited dynam-
ic range in the velocity measurements I or limited spatial cov-

erage of the flow field,: a number ofimportant features of the

vortical structures could not be obtained. The purpose of this

Letter is to establish the validity and attractiveness of the

PIDV technique for accurate measurements of the instanta-
neous two-dimensional velocity field in a three-dimensional,

time dependent, vortical, and entraining flow.
The flow field considered is a three-dimensional incom-

pressible jet of air issuing from a rectangular nozzle of aspect
ratio 4. The structure and development of such a jet is mark-

edly different from those issuing from two-dimensional and

axisymmetric nozzles. 3 One of the interesting features is the

"crossover" phenomenon, which is generally characterized
by the switching of the major and minor axes downstream of

the nozzle exit. The physical mechanism of this phenome-

non is not well understood. Recent experiments on low-as-

pect-ratio elliptic jets 4 suggest that an initial instability pro-
tess may influence the position of the crossover point and

thus the development of the jet. With this in mind, the pres-

ent investigation focuses on studying the structure and

growth of the mixing layer region of the jet.
A brief description of the particle image displacement

velocimetrv techniaue is ¢iven here, however, for more de-
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tails see Refs. 5 and 6. The PIDV measurements of fluid

flows can be described as follows: A selected cross section of

the flow is illuminated by a sheet ofcoherent light. A pulsed

laser such as a Nd:Yag laser, is normally used as the light

source. The laser sheet is formed by focusing the laser beam

with a spherical lens of long focal length followed by a one-
dimensional expansion using a cylindrical lens. Within the

illuminated sheet, the flow is made visible through small

tracer particles seeded within the fluid. The illuminated par-

ticles generate resolved diffraction limited images recorded

in a multiple exposure photograph. The spacing between the

images of the same tracer provides a measure of the local
flow velocity.

To determine this spacing, a Fourier analysis is used. A

focused laser beam is used to interrogate a small area of the
multiple exposure photograph transparency. The diffraction

produced by coherent illumination of the multiple images in

the film transparency generates Young's fringes. The fringes
are oriented perpendicular to the direction of the local dis-

placement and their spacing is inversely proportional to the

magnitude of the displacement. The use of Young's fringes
avoids the difficulty of locating individual image pairs in the

photograph.

In this method, the sign of the velocity cannot be deter-

mined. 7 A method to resolve this ambiguity, as well as to

improve the technique's capabilities to measure large veloc-
ity gradients, is incorporated in this experiment. This meth-

od, 7"2commonly known as the "velocity bias technique,"

consists of recording the flow field in a moving reference

frame, thus superposing a known velocity bias to the actual
flow velocity. This effect may be accomplished in several

ways, such as using a moving camera during the photo-

graphic recording or by optical means using scanning or ro-
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rating mirrors. For the data presented here, a scanning mir-

ror is used to displace the image during the photographic
recording.

A simple low speed air supply system was used to flow

air into a cylindrical settling chamber 27 cm in length and 10

cm in diameter. A honeycomb and a series of screens at the

inlet of the nozzle are used to further reduce flow distur-

bances. The cross-section area of the contraction changes

gradually from a circular cross section. 10 cm in diameter, to

a rectangular nozzle. The long dimension and the short di-

mension of the rectangular nozzle are, respectively, 3 cm and

0.75 cm and the streamwise contours of the contraction for

the two central planes are fifth-order polynomials. In order

to obtain appropriate jet seeding, smoke particles in the sub-

micron range are produced using a Rosco-type 1500 smoke

generator. The smoke and ambient air are mixed in a large
cylindrical settling tank (100 cm in length and 45 cm in

diameter). The air-smoke mixture is then supplied to the

settling chamber of the jet using a small axial fan. A second

smoke generator of the same type is used to seed the outside

ambient fluid surrounding the jet.

A mean velocity of 4.5 m/see is maintained at the exit

plane of the nozzle; the mean velocity profile at the exit plane

is fiat with a laminar boundary layer at the walls. The Reyn-

olds numbers based on the hydraulic diameter and the small

dimension of the nozzle are, respectively, 3600 and 2250.

For the illumination, a laser beam from a frequency-

doubled, double-pulsed Nd:Yag laser (Spectra-Physics
model DCR-11 ) is steered and focused to a diameter of 0.3

mm using an inverse telescope lens arrangement. A cylindri-

cal lens with a focal length of - 24.5 mm diverges the fo-

cused beam one dimensionally, creating the light sheet. The

laser sheet is 45 mm wide and illuminates the central plane

through the small dimension of the nozzle. A 35 mm camera

(Nikon F-3) with a 150 mm macro lens loaded with

400ASA KODAK TMAX film, a film with good sensitivity

at the laser light frequency, is used for the photographic re-
cording. The lens aperture is set at f/5.6 and the magnifica-

tion is 0.5. Two laser pulses with a duration of 10 nsec and a

separation of 50/_sec are used for the double exposure re-

cording. In this mode, the laser delivered a 15 m J/pulse of

light at the 0.532 nm wavelength. The pulse separation of 50
/.Lsec is much smaller than any relevant time scale of the flow

field, thus the double exposure photograph truly represents a

flow field at a given instant of time.

The analysis of the photograph was performed by means

ofan integrated image analysis system based on a Gould IP-

8500 digital image processor controlled by a/.zVAX II. The

system also includes a computer controlled scanning mecha-

nism for updating the position of the film transparency. The

algorithm used to determine the velocity vector is discussed

in Ref. 5, and its accuracy is estimated at 1% or better.

Typical double exposure photographs of the jet in the

central plane through the small dimension of the nozzle, for

two different times are shown in Fig. 1. These pictures dis-

play the flow field from the nozzle exit to a downstream

location of about eight widths. The photographs were taken

using the velocity shift and external seeding of the ambient

medium. From these and other flow visualization pictures,
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FIG. 1. Instantaneous double exposure photographs of the central plane.

containing the small dimension of the jet. and superposed with the jet cen-

terline velocity distribution.

the followingobservations were made. The jet consistsof

three regions: the region in which the initial shear layer is

unstable and rolls up into discrete vortices: an interaction

region in which the vortices pair with each other: and a re-

gion in which the vortices break up into random, three-di-

mensional motion. In spite of the relatively large aspect ratio

of the nozzle exit (AR ----4), the rectangular jet organizes

itself into a structure similar to that of an axisymmetric jet?

The pairing process is also quite similar. In this process, the

trailing vortex catches up with the leading vortex, decreases

in size, and passes through the leading vortex, which has

slowed down and grown in size. The vortex cores rotat_

around each other and ultimately merge, producing a singk

vortex. A number of vortex pairings can occur before the

vortex becomes three dimensional. The physical region.,

where these phenomena take place overlap and depend or

the phase of the development of the jet. Strong acceleration:

and decelerations exhibited by the large scale vortical struc

tures can be observed when the instantaneous axial center-

line velocity distribution normalized with the jet's axial exit

velocity is superimposed on the photographs (Fig. i ). The

nondimensional passage frequency of the vortices before

pairing is estimated to be about St,,, = 0.7, where Stw is th_

Strouhal number based on the nozzle width w and the mear

exit velocity U of the jet, i.e., St,o =fw/U. This Strouha

number is close to that of an axisymmetricjet, _ at a compara

ble Reynolds number. Examination of several photograph
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FIG. 3. Instantaneous two-dimensional velocity field shown in a reference

frame moving with the convection velocity of the vortical siruclures,

suggests that the vortex breakdown leads to the larger
spreading rate of the jet. The increased three-dimensionality
enhances the mixing in the plane of the small dimension of
the nozzle. No increase in mixing was observed in the central

plane containing the long dimension of the nozzle.
For two typical phases in the development of the jet,

shown as the double exposed photographs in Fig. 1, the in-
stantaneous velocity fields were obtained. The results after
removal of the velocity bias (i.e., in the laboratory reference
frame) are shown as a series of uniformly scaled velocity
vectors in Fig. 2. Because the velocity gradients are largest in
the transverse direction, the velocity data were acquired us-
ing a rectangular mesh with a mesh spacing of 2 mm in the jet
axial direction and 0.5 mm in the jet transverse direction.
The velocity field displayed in Fig. 2, represents, with great
fidelity, all the aforementioned regions of the flow field.

These include the shear layers and regions with strongly
three-dimensional motion. Such an accurate representation
of the flow field was a consequence of our use of the velocity
bias technique and the judicious management of the flow
seeding procedure.

Examination of the obtained velocity fields confirms

our previous analysis based on the flow visualization pic-
tures. The jet structure can be further illuminated when the
velocity field is presented in a reference frame moving with
the convection velocity of the vortical structure, estimated to
be 60% of the jet exit velocity (Fig. 3). In this reference
frame, the large scale vortical structures, as well as the na-
ture of the symmetric instability, are clearly observed. The
instantaneous velocity profiles provide a unique means to
quantify the extent of the jet unsteadiness, the existence of

the coherent structures, their interactions, and subsequent
generation of random three-dimensional motions.

A successful application of PIDV to study a time depen-
dent, vortical, entraining, and three-dimensional flow field is
reported.The dataacquiredprovidedquantitative and flow
visualization information that revealed the nature of the in-

stability process that occurs in the initial region of the jet.
This process is consistent with previously observed features
of axisymmetric jets. Furthermore, new and important
quantitative information was obtained which is essential for
a deeper understanding of this complex flow field.
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Abstract

This paper describes am experimental investigation of the large scale vortical struc-

tures in the transition region of a rectangular jet of aspect ratio 4 at a Reynolds number,

based on the equivalent diameter, of 4500. The instantaneous two dimensional flow for

the first 4 equivalent diameters in the jet was measured using the Particle Image Dis-

placement Velocimetry technique. This technique provides an instantaneous velocity

field measurement capability with good spatial resolution, from which the vorticity field

can be computed accurately. The kinematics of the vortex interaction process are de-

scribed in terms of the formation and evolution of coherent-vorticity distributions. An

important observation is that the interaction process of cylindrical vortices is not unique

and consists of several different events. The paper describes two of such processes which

are typical of rectangular jets.

1. Introduction

Since the dear and vivid experiments of Brown 1, the presence of large scale vorti-

cal structures in the transition region of jets have been recognized to play a significant

role in the downstream development of a jet. There have been several review articles

describing the nature of these structures and their rele_mnce to the overall understand-

ing of the turbulence, and the most recent and comprehensive of these is given by

Hussain 2. Because of their simple geometry, most previous investigators have focused

their attention in understanding the transition region of either an axisymmetric jet (eg.

Becket and Massaro _) or a two-dimensional jet (eg. Rockwell and Niccolls 4) . More re-

cently, Ho and Gutmark s and Hussain and Husain 6 have studied jets exiting from low

aspect ratio elliptic nozzles. These studies provided better understanding of the nature

of the mixing processes that takes place in an elliptic jet. The role of large vortical

structures on the deformation (cross-over phenomenon) of a rectangular jet was con-

vinsingly pointed out by Abramovitch 7. In the present investigation, we attempted

to study the transition region of a rectangular jet with a relatively new experimental

technique commonly known as Particle Image Displacement Velocimetry (PIDV). This

technique will provide the instantaneous velocity field in a selected plane of the flow

field with sufficient accuracy to obtain the vorticity field. The transition region of a jet
is best characterized by the study of the instantaneous flow, with the hope that a more

detailed knowledge may lead to some abilhy to control its characteristics.
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In the past, many researchershaveattempted to identify, by flow visualization
and conditionallysampledstatisticalmeasurements,typical kinematic featuresof the
instantaneousflow. Suchan approach,althoughwill yield usefulinformation in flows
which are typically two dimensionaland havea dominantfrequencyat which many
of the significanteventstakeplace,may proveto be difficult to implementin three
dimensionaljets. Here,with the useof the PIDV technique,the study of the vortex
dynamics,especiallyin the regionwherelarge scalestructuresare present,is made
muchsimplerwith the measurementof instantaneousvorticity. A brief descriptionof
the techniqueis givenbelow,but for moredetailsreferencemaybe madeto a recent
reviewarticle by Lourencoet.al8 .

The PIDV techniquecanbedescribedasfollows: A selectedcrosssectionof the
flow is illuminatedby a sheetof coherentlight. A pulsedlaser,suchasa Nd:Yaglaser,
is normallyusedas the light source.The lasersheetis formedby focusingthe laser
beamwith a sphericallensof longfocallengthfollowedby a one-dimensionalexpansion
usinga cylindricallens.Within the illuminatedsheet,the ftowis madevisiblethrough
small tracerparticlesseededin the fluid. The illuminatedparticlesgenerateresolved
diffractionlimited imageswhicharerecordedin a multipleexposurephotograph.The
spacingbetweenthe imagesof the sametracer providesa measureof the local fluid
velocity. To determinethis spacing,a Fourieranalysisis used. A focusedlaserbeam
is usedto interrogatea smallareaof the multiple exposurephotographtransparency.
The diffraction producedby coherentillumination of the multiple imagesin the film
transparencygeneratesYoung'sfringes.The fringesaxeorientedperpendicularto the
directionof the local displacementand their spacingis inverselyproportional to the
magnitudeof the displacment. In this method, the sign of the velocity can not be
determined.A method to resolvethis ambiguity,aswell as to improvethe dynamic
rangefor the velocity measurement,is incorporatedin this experiment.The method
consistsof recordingthe flow field in a movingreferenceframe, thus superposinga
knownvelocitybiasto theactualflowvelocity.This is accomplishedby opticalmeans
usinga scarmingmirror.

2. Apparatus and Instrumentation

A simple low speed air supply system was used to flow air into a settling chamber

25 cm in length and 7.5 cm in diameter. A honeycomb and a series of screens at the

inlet of the settling chamber were used to reduce the flow distrubances. The cross-

section area of the nozzle contraction changes gradually from a circular cross section,

7.5 cm in diameter: to a rectangular nozzle. The long (L) and short (\V) dimensions of
the rectangular nozzle are 3cm and 0.75 cm respectively and the streamwise contours

of the contraction are fifth-order polynomiais. The contoured nozzle has a contraction

ratio of 19.6:1 over a length of 1.6Di: where Di is the inlet diameter. In order to

obtain appropriate jet seeding, smoke particles in the sub-micron range are produced
using a Rosco-type 1500 smoke generator. The smoke and ambient air are mixed in

a large cylindrical settling tank (100 cm in length and 45 cm in diameter). The air-

smoke mixture is then supplied to the settling chamber of the jet using small axial fan.

A second smoke generator of the same type is used to seed the outside ambient fluid

surrounding the jet. To minimize ambient distrubances the whole apparatus is placed

in a rectangular room (153cm x l$3crn x 100crn) made of transparent walls.
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Forthe illumination,a laserbeamfromafrequency-doubled,double-pulsedNd:Yag
laser(Spectra-PhysicsmodelDCR-11)is steeredandfocusedto a diameterof 0.3mm
usingan inversetelescopelensarrangement. A cylindrical lens with a focal length of

-24.5 nun diverges the focused beam one dimensionally, creating the light sheet. The
laser sheet is 4.5 ¢m wide and illuminates the central plane through the small dimension

of the nozzle. Two laser pulses with a duration of 10 nsec and a separation of 50#see are

used for the double exposure recording. The pulse separation of 50_._ec is much smaller

than any relevant time scale of the flow field, thus the double exposure photograph

truly represents a flow field at a given instant of time. The photographs were taken at

random and some times on different days.

The analysis of the photographs was performed by means of an integrated im-

age analysis system based on Gould IP-8500 digital image processor controlled by a

[_VAXII. The system also includes a computer controlled scanning mechanism for

updating the position of the film transparency. The algorithm used to determine the

velocity vector is discussed in Ref. S, and its accuracy is estimated at 1% or better.

The velocity vectors were obtained in a cartesian grid (60 x 80). Using a central finite

dift'erence scheme, the instantaneous vorticity was obtained with an estimated accracy

of about 5To.

In addition to the use of PIDV technique, a laser sheet flow visualization study was

conducted. A thin laser sheet was used to illuminate a plane of interest within the flow

field. The image was captured by a video camera at 30Hz frame rate. Three different

planes are selected for this study: the two central planes along the major and minor

axes, and a plane along the diagonal of the nozzle exit (i.e 45 ° to the major and minor
axes.

lniti_zl Co_clitions:

The nozzle employed in the present investigation is designed to produce a top-hat

mean velocity profile with laminar boundary layers at the nozzle exit wall. A mean

centerline velocity of 4.5 m/see is maintained at the exit plane of the nozzle. The

centerhne turbulence intensity is about 3%. The laminar bounda_., layer profile at the

nozzle exit; as measured by a single normal hot-wire, is of Blasius type. The average

momentum thickness along the long and short dimensions of the nozzle are about 0.0S

mm and 0.09 mm respectively. The Reynolds number based on the small dimension

of the nozzle exit, and the exit mean velocity is 2250. On the basis of arguments put

forth by Abramovitch 7, a proper length length scale to be used in defining the Reynolds

number for a rectangular jet is the equivalent diameter taken as D, - 2v_ = 2W,

where a and b are semi- major and smi-minor axes respectively. The corresponding

Reynold number (Re -- V',_@,D) for the present experiment will be 4500. The use of

such a length scale to characterize a jet is also supported by the experimental data of
Hussaln and Husain e for elliptic jets.

3. Results and Discussion

Typical double exposure photographs of the jet in the central plane through the

small dimension of the nozzle, for two different times_ are shown in figure 1. The pictures

displ_- the flow field from the nozzle exit to a downstream location of S widths. From

a number (about 100) of similar photographs and flow visualization pictures the
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Fipure 1. Instantaneous double ezposure photograpt_s of the centraI plane con_ainin 9 the
small dimension of the nozzle,

near field ( X/W <_ 20; where X is the coordinate along the eenterline of the jet with

its origin located at the nozzle exit) of the jet can be characterized by three distinct,

regions. The first region in which the initial shear layer is unstable and rolls up into

discrete vortices; an interaction region in which two or more vorticies interact with each

other; and a region in which vortices break up into three dimensional motion. From

flow visualization pictures, a eyhndrieal vortex roiled up as a rectangle is observed at
1.4 widths downstream of the nozzle exit. Further downstream the individual vortices

interact with each other; consequently, the jet spreads very rapidly in the minor axis

plane. Such interactions take place in the region 2.0 < X/W < 6.0. For X/W > 6 the

large vortical structures become highly three dimensional.

The passage frequency of the vortices at a given location can be obtained by study-

ing the _requency spectra of the hot-wire signal at that location. With this in mind,

frequency spectrum was obtained for various positions in the shear la.vers surrounding

the jet column for 0.6 < X/W < 6.0. Figure 2 shows a selected sample of these taken

in central planes of major and minor axes. The ordinate is the amplitude plotted witi_

an arbitrary linear scale. The spectrum at the nozzle exit (X/W =0.5) shows a distinct

peak at 120Hz. This peak frequency has the same value around the circumference of

the jet. The Strouhal number based on the intial momentum thichkness is 0.0213 in

the minor axis plane, and 0.024 in the major axis plane. At X/W = 1.0, in addition to

the peak at 120Hz, several other prominent peaks are observed at 148, 176, 210, 246,

and 282Hz. These peaks are the same in the two central planes. Based on this and

flog: visualization obser_'ations, it is suggested that a single cylindrical vortex is shed in

an instant. Further downstream (i.e X/W __ 4) a single prorrrinant broad band peak is

observed at 72Hz in the central XY plane. This frequency represents the so called the

"preferred mode" in jets. The corresponding Strouhal number based on the equix_lent

diameter (St =/-_') is 0.24. It is generally observed that the preferred Strouhal number

is approximately proportional to the Strouhal number of the shear layer mode _ (i.e the

vortex passage frequency at the end of the potential core (X/W =4) is simply a fraction

of the shear layer mode frequency). However, in the present study such a relationship

is not observed. It may be suggested that the regular sequence of amalgamations of

vorticies (i.e pairing process) observed in axisymmetric and plane jets does not _ake
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place. Further confirmation of this can be found later in the paper. The prominent

peaks observed at higher frequencies (>I20Hz) are beheved to represent the effect of

the corner "streamwise vorticies" that are generated due to uneven boundary" layer

structure at the nozzle exit. This aspect is presently being investigated.

Figure 3a shows a typical insta_q_aneous velocity field corresponding to the double

exposed photograph in figure la. The results after removal of velocity bias axe shown

as a series of uniformly scaled velocity vectors. Because of the velocity gradients are

largest in the transverse direction, the velocity data were acquired using a rectang-ulax

mesh (60 × 80) with a mesh spacing of 1 mm in the axial direction and 0.6 mm in the

transverse direczion. Using a central finite difference scheme the instantaneous vortici_y

end strain rates axe calculated, end shown in figure 3. Also included in the figure axe

the instantaneous Reynolds stresses corresponding to a typical phase shown in figure

la. These results represent, with great fidelity, the a/oremenzioned regions of the flow

field. Superposition of the three Reynolds stresses on the vorticity plot shows that the

r
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peaks for these quantities lie away from the vorticity peaks associated with the large

vortical structures. The Reynolds stress and vorticity patterns show _ strong symmetry

with respect to the jet centerline. The nature of three dimensionality generated can.

be observed in a plot of the instantaneous strain rate (figure 3f). Similar results axe

obtained for _ number (47) of photographs representing individual events tha_ take place

in the transition region of the jet. After careful examination of the instantaneous double

exposed photographs, and the flow visualization pictures, it _s suggested that there axe

more than one type of multiple vortex interactions occur in the transition region of the

jet.
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Figure 4. A sequence of a vortez interaction process; L_ft: do_.b& ezposure photographs;

_ighA: correspor_din 9 vor_ici_l maps.

With the use of two dimensional spatial cross-correlations between a selected set

of instantaneous velocity fields, two typical sequences of vortex interactions axe selected

and presented in figures 4 and 5. Included in these figures are the double exposure

pho_ographs and and their corresponding vorticitv distributions. In each figure, the first

photograph (a) represents the beginning of a sequence, and the following two pictures

(b) and (c) depict the progressive development of a vortex interaction process. In this

study: the flow orgamizes itself symmetrically with respect to the jet centerline. To guide

the following discussion, individual vorticies in the figures are numbered as shown. The

initial shear layer emanating from the nozzle lip roll up into a succession of cylindrical

vorticies. Three such vorticies are identified in figure 4a. Two successive vorticies 2 and
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3 interact with one another in such a w_" that the trailing vortex 2 catches up with

vortex 3 (figure 4b), proceeds to and moves at a high speed through the leading vortex

(figure 4c). During this process_ the leading vortex 3 moves away from the jet centerlJne

resulting in enhanced spreading of the jet in the minor axis plane. In the mojor axis

plane, like in the case of an elliptic jet s'e , the cylindrical vortices are bent and distorted

in the lateral direction. A different type of vortex interaction process is shown in figure

5. As before, two successive vorticies 2 and 3 begin to interact with each other in figure

5a, and at later times produce patterns different from those observed in the previous

sequence. Yet a third type of vortex arrangement can be seen in figure 1, where two

successive vorticies appear to move together without significant interaction bezween
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them. In the presentexperiment,wehaveobservedmore than threedifferenttypesof
vortexinteractions.Carefulexaminationof thepicturesfrom thevideotapesuggestthat
the differentinteractionsnotedaboveoccurrepeatedly.Basedon the limited amount
of data, it may bearguedthat the differentTypesof interactionsobservedherearea
conesquenceof thepresenceof "stream-wisecornervortices"andtheir interactionswith
cychndricalvorticiessurroundingthe jet. Further investigationsareclearlyneededto
unravelthe differentfacetsof the vortex interactionsobservedhere.

4. Concluding Remarks

This exploratoryexperiment,for thefirst time providedinformationregardingthe
vortex formation and their subsequentinteractionsin the transition regionof a rect-

angular jet. This description of the interactions between the cylindrical vorticies is

greatly aided by the instantaneous velocity field measurements and their corresponding

vorticity fields.

Our data suggest that there are more than one type of vortex interaction processes

occur in the transition region before the jet becomes highly three dimensional. Two

such processes are described in this paper. Present results indicate that the "stream-

wise vortices" generated at the corners of the nozzle exit, due to uneven boundary layer

structure, may have significant influence on the development of the transition region of

a rectangular jet.

The cylindrical vorticies once formed and shed; generate energetic level coherent

vorticity and turbulence production in between the vortical structures. To properly

characterize the jet structure in the initial region, our experiment indicates that the

detailed description of the instantaneous flow of the individual events may be necessary

for better understanding of the physics of transition in three dimensional jets.
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